ASR:2015-03-30
来自cslt Wiki
Speech Processing
AM development
Environment
- grid-11 often shut down automatically, too slow computation speed.
RNN AM
- details at http://liuc.cslt.org/pages/rnnam.html
- tuning parameters on monophone NN
- run using wsj,MPE
Mic-Array
- investigate alpha parameter in time domian and frquency domain
- ALPHA>=0
Convolutive network
- HOLD
- CNN + DNN feature fusion
RNN-DAE(Deep based Auto-Encode-RNN)
- HOLD -Zhiyong
- http://cslt.riit.tsinghua.edu.cn/cgi-bin/cvss/cvss_request.pl?account=zhangzy&step=view_request&cvssid=261
Speaker ID
- DNN-based sid --Yiye
- Decode --Yiye
- http://cslt.riit.tsinghua.edu.cn/cgi-bin/cvss/cvss_request.pl?account=zhangzy&step=view_request&cvssid=327
Ivector based ASR
- http://cslt.riit.tsinghua.edu.cn/cgi-bin/cvss/cvss_request.pl?step=view_request&cvssid=340
- Ivector dimention is smaller, performance is better
- Augument to hidden layer is better than input layer
- train on wsj(testbase dev93+evl92)
Text Processing
tag LM
- similar word extension in FST
- check the formula using Bayes and experiment
RNN LM
- rnn
- code the character-lm using Theano
- lstm+rnn
- check the lstm-rnnlm code about how to Initialize and update learning rate.(hold)
W2V based doc classification
- corpus ready
- learn some benchmark.
Translation
- v5.0 demo released
- cut the dict and use new segment-tool
Sparse NN in NLP
- prepare the ACL
- check the code to find the problem .
- increase the dimension
- use different test set,but the result is not good.
online learning
- data is ready.prepare the ACL paper
- prepare sougouQ data and test it using current online learning method
- baseline is not normal.