2024-04-29

来自cslt Wiki
跳转至: 导航搜索
People This Week Next Week Task Tracking (DeadLine)
Dong Wang
  • Presentation for several public AI promotion
  • Primary AI, Grade 3 (1), 8 chapters done
  • Some review on linguistic literature about perception uncertainty in pronunciation assessment
  • New form of text enrollment and speech fine-tuning to account for accent-based KWS.
Lantian Li
  • GPU status [1]
  • Projects (AED, TSE)
  • ASIP-BUPT (NeuralScoring, CohortSS)
  • BlockChain Courses
Ying Shi
  • DI-TING structure verify here
Zhenghai You
Junming Yuan
  • AI Graph slides refinement
  • IS24 rebuttal
  • Control FA experiment baseline result[2]
Chen Chen
  • prepare CNVSRC2024 Baseline system
  • vii group [3]
  • Rebuttal
Xiaolou Li
  • CNVSRC2024 baseline training
  • IS24 Rebuttal
Zehua Liu
  • AKVSR code
  • data crop
  • IS24 Rebutall
Pengqi Li
  • Leave of Absence
  • Read&Summary SA-XAI workshop(ICASSP) papers
  • Experiment(PID) on Timit(Extend workshop paper)
Wan Lin
  • Pre & QA for graduation paper
  • Neural Scoring [4]
Tianhao Wang
  • Neural Scoring [5]
  • IS24 rebuttal
Zhenyu Zhou
  • Paper reading
  • IS24 rebuttal
Junhui Chen
  • Graduation paper
  • Neural Scoring: chunk 2s->4s, NS is better than EA-ASP
  • Try to use large pretrain model as test utt encoder(wavLM, wav2vec2, etc.)
Jiaying Wang
  • paper reading report
  • Huawei data collection
  • cohort test[6]
Yu Zhang
  • AutoML:
    • switched from FLAML to EVALML as it provided a tool chain better suited to our tasks
Wenqiang Du
  • Hard negative training,FA data is ready,prepare to train the model
Yang Wei
  • Children mispronunciation detection and diagnosis
    • Prepare baseline recipe and challenge document
    • Check the baseline model, due to the extraordinary CER performance.
Lily
  • thesis
  • AIgraph slides
Turi
  • Data collection
    • 14K so far
  • Course work & paper reading
Yue Gu
  • Semantic paraformer model reconstruction
  • Interspeech rebuttal
Qi Qu
  • Performance test:
    • Two-phased KWS vs KWS + FunASR
  • Data processing:
    • ~100k FA segments collected out of ~6k hours
    • Data processing routine
  • Model training:
    • Fine-tuning w/ ~20k more FA