第十二章 机器学习基本流程

来自cslt Wiki
2022年8月2日 (二) 13:42Cslt讨论 | 贡献的版本

跳转至: 导航搜索

教学资料

  • 教学参考
  • 课件
  • 小清爱提问:什么是爬山法?[1]
  • 小清爱提问:什么是模拟退火算法?[2]
  • 小清爱提问:什么是奥卡姆剃刀准则? [3]
  • 小清爱提问:为什么说数据是人工智能的粮食?[4]


扩展阅读

  • 维基百科:没有免费的午餐定理 [5]
  • 维基百科:梯度下降法[6][7]
  • 百度百科:梯度下降法[8][9]
  • 知乎:梯度下降法[10]
  • 维基百科:模拟退火算法 [11][12]
  • 百度百科:模拟退火算法[13][14]
  • 知乎:模拟退火详解 [15]
  • 维基百科:牛顿法 [16][17]


演示链接

开发者资源

高级读者

  • 王东,机器学习导论,第一章“绪论”,第十一章“优化方法”[18]
  • Wolpert, David (1996), "The Lack of A Priori Distinctions between Learning Algorithms", Neural Computation, pp. 1341–1390 [19]