ASR:2015-11-23

来自cslt Wiki
2015年11月23日 (一) 07:57Zxw讨论 | 贡献的版本

(差异) ←上一版本 | 最后版本 (差异) | 下一版本→ (差异)
跳转至: 导航搜索

Speech Processing

AM development

Environment

  • in disaster

RNN AM

  • train monophone RNN --zhiyuan


Adapative learning rate method

  • sequence training -Xiangyu

Mic-Array

  • hold
  • compute EER with kaldi

Data selection unsupervised learning

  • hold
  • acoustic feature based submodular using Pingan dataset --zhiyong
  • write code to speed up --zhiyong
  • curriculum learning --zhiyong

RNN-DAE(Deep based Auto-Encode-RNN)

  • hold
  • RNN-DAE has worse performance than DNN-DAE because training dataset is small
  • extract real room impulse to generate WSJ reverberation data, and then train RNN-DAE

Ivector&Dvector based ASR

  • learning from ivector --Lantian
  • CNN ivector learning
  • DNN ivector learning
  • binary ivector
  • metric learning
  • LDA-vector Transfer Learning
  • write a technique report

language vector

  • write a paper--zhiyuan
  • hold
  • language vector is added to multi hidden layers--zhiyuan
  • RNN language vector
  • hold

multi-GPU

  • multi-stream training --Sheng Su
  • write a technique report
  • kaldi-nnet3 --Xuewei
  • train 7*2048 tdnn using 4000h data --Mengyuan

multi-task

  • test according to selt-information neural structure learning --mengyuan
  • hold
  • write code done
  • no significant performance improvement observed
  • speech rate learning --xiangyu
test using extreme data

Text Processing

RNN LM

  • character-lm rnn(hold)
  • lstm+rnn
  • check the lstm-rnnlm code about how to Initialize and update learning rate.(hold)

Neural Based Document Classification

  • (hold)

RNN Rank Task

  • Test.
  • Paper: RNN Rank Net.
  • (hold)
  • Output rank information.

Graph RNN

  • Entity path embeded to entity.
  • (hold)

RNN Word Segment

  • Set bound to word segment.
  • (hold)

Seq to Seq(09-15)

  • Review papers.
  • Reproduce baseline. (08-03 <--> 08-17)

Order representation

  • Nested Dropout
  • semi-linear --> neural based auto-encoder.
  • modify the objective function(hold)

Balance Representation

  • Find error signal

Recommendation

  • Reproduce baseline.
  • LDA matrix dissovle.
  • LDA (Text classification & Recommendation System) --> AAAI

RNN based QA

  • Read Source Code.
  • Attention based QA.
  • Coding.

RNN Poem Process

  • Seq based BP.
  • (hold)

Text Group Intern Project

Buddhist Process

  • (hold)

RNN Poem Process

  • Done by Haichao yu & Chaoyuan zuo Mentor : Tianyi Luo.

RNN Document Vector

  • (hold)

Image Baseline

  • Demo Release.
  • Paper Report.
  • Read CNN Paper.

Text Intuitive Idea

Trace Learning

  • (Hold)

Match RNN

  • (Hold)

financial group

model research

  • RNN
  • online model, update everyday
  • modify cost function and learning method
  • add more feature

rule combination

  • GA method to optimize the model

basic rule

  • classical tenth model

multiple-factor

  • add more factor
  • use sparse model

display

  • bug fixed
  • buy rule fixed

data

  • data api
  • download the future data and factor data