Task List

来自cslt Wiki
2015年7月28日 (二) 10:52Zhangzy讨论 | 贡献的版本

跳转至: 导航搜索

Task To Do

  • End-to-End speech recognition
  • Zhiyuan Tang/Mengyuan Zhao/Zhiyong Zhang
  • Integrate the class information to HCLG fst for speech recognition
  • Distant speech recognition
  • RNN-DAE: echo or reverberation
  • Mengyuan Zhao/Zhiyong Zhang
  • Reverberation
  • Mutli-microphones
  • (Lasso),Xuewei Zhang
  • Voice conversation
  • xx
  • Unbound activation function(Rectifier/Maxout/Pnorm) go-through searching method
  • Zhiyong Zhang/Zhiyuan Tang
  • Sparse DNN
  • Zhiyuan Tang
  • Monmentum-like Hessien-Free acceleration
  • Correlation based SEONE cluster
  • NN Multi-GPU parallel traing
  • Multi-Machine
  • nnet2 optimization
  • Multi-GPU on one Machine
  • Sheng Su
  • Audio Embedding
  • Activation value normalization through time
  • For bigger learning rate
  • Mix-training Balance decision tree
  • Zhiyong Zhang
  • RNN training accelerating
  • Data selection
  • Zhiyong Zhang
  • Sub-modular data selection
  • Decoder
  • Confidence output for task-required

Task DONE

  • Multi-Mode features based VAD*
  • Shi Yin, DONE
  • DNN based Language identification and Speaker identification*
  • Xuewei Zhang/Zhiyuan Tang
  • Neural network visulization*
  • Mian Wang,DONE
  • Dark knowledge*
  • Mengyuan Zhao, Xiangyu Zeng, Zhiyong Zhang, Chao Liu
  • Normal RNN speech recognition*
  • Mengyuan Zhao


Technical Report To Write

1, DNN-DAE based noise cancellation -- Xiangyu Zeng / Mengyuan Zhao / Zhiyong Zhang  --DONE
2, Speech Rate DNN speech recognition --Shi Yin/Xiangyu Zeng --DONE
3, CNN+fbank feature combination --Mian Wang /Yiye Lin /Mengyuan Zhao /Shi Yin
4, Uyghur low-resource acoustic model enhancement -- Shi Yin / Mengyuan Zhao / Zhiyong Zhang --DONE
5, Uyghur 20h database release --Kaer /Shi Yin --DONE
6,Dark-Knowledge Transfer
   *: Xiangyu Zeng/ Mengyuan Zhao / Zhiyong Zhang

Paper to Write

Project

  • Xiaomi TV
  • Mengyuan Zhao/Zhiyong Zhang
  • TAG-lm & Domain-specific general lm
  • Chinese-English mix-training