ASR:2015-03-09

来自cslt Wiki
2015年3月16日 (一) 01:11Lr讨论 | 贡献的版本

(差异) ←上一版本 | 最后版本 (差异) | 下一版本→ (差异)
跳转至: 导航搜索

Speech Processing

AM development

Environment

  • grid-11 often shut down automatically, too slow computation speed.
  • GPU has being repired.--Xuewei

RNN AM

Mic-Array

  • reproduce environment for interspeech
  • alpha parameter in Lasso

Dropout & Maxout & rectifier

  • HOLD
  • Need to solve the too small learning-rate problem
  • 20h small scale sparse dnn with rectifier. --Mengyuan
  • 20h small scale sparse dnn with Maxout/rectifier based on weight-magnitude-pruning. --Mengyuan Zhao

Convolutive network

  • Convolutive network(DAE)
  • HOLD
  • Technical report writing, Mian Wang, Yiye Lin, Shi Yin, Mengyuan Zhao
  • reproduce experiments -- Yiye

DNN-DAE(Deep Auto-Encode-DNN)

RNN-DAE(Deep based Auto-Encode-RNN)

Speech rate training

Neural network visulization

Speaker ID

Ivector based ASR

  • Ivector dimention is smaller, performance is better
  • Augument to hidden layer is better than input layer

Text Processing

LM development

Domain specific LM

  • LM2.X
  • train a large lm using 25w-dict.(hanzhenglong/wxx)
  • v2.0c filter the useless word.(next week)
  • set the test set for new word (hold)
  • prepare the wiki data: entity list.

tag LM

  • Tag Lm(JT)
  • error check
  • similar word extension in FST
  • add the experiment to tag-lm paper.

RNN LM

  • rnn
  • the input and output is word embedding and add some token information like NER..
  • map the word to character and train the lm.
  • lstm+rnn
  • check the lstm-rnnlm code about how to Initialize and update learning rate.(hold)

Word2Vector

W2V based doc classification

  • data prepare.(hold)

Knowledge vector

  • make a report on Monday

Translation

  • v5.0 demo released
  • cut the dict and use new segment-tool

Sparse NN in NLP

  • prepare the ACL
  • check the code to find the problem .
  • increase the dimension
  • use different test set.

QA

improve fuzzy match

  • add Synonyms similarity using MERT-4 method(hold)

online learning

  • data is ready.prepare the ACL paper
  • prepare sougouQ data and test it using current online learning method

framework

  • extract the module
  • extract the context module ,search module,entity recognize module and common module.
  • define the inference in different modules
  • composite module

leftover problem

  • new inter will install SEMPRE