ASR:2014-12-08

来自cslt Wiki
2014年12月8日 (一) 08:43Zhaomy讨论 | 贡献的版本

(差异) ←上一版本 | 最后版本 (差异) | 下一版本→ (差异)
跳转至: 导航搜索

Speech Processing

AM development

Environment

  • Already buy 3 760GPU
  • grid-9/12 760GPU crashed again; grid-11 shutdown automatically.
  • Change 760gpu card of grid-12 and grid-14(+).

Sparse DNN

RNN AM

  • Initial nnet seems not very well, need to be pre-trained or test lower learn-rate.
  • For AURORA 4 1h/epoch, model train done.
  • Using AURORA 4 short-sentence with a smaller number of targets.(+)
  • Adjusting the learning rate.(+)
  • Trying toolkit of Microsoft.(+)
  • details at http://liuc.cslt.org/pages/rnnam.html
  • Reading papers

A new nnet training scheduler

Drop out & Rectification & convolutive network

  • Drop out(+)
  • AURORA4 dataset
  • Use different proportion of noise data to investigate the effect of xEnt and mpe and dropout
    • Problem 1) The effect of dropout in different noise proportion;
No. |  data & config        | test_clean_wv1  | test_airport_wv1 | test_babble_wv1 | test_car_wv1 |
---------------------------------------------------------------------------------------------------
 1  |  clean-std            | 6.74            |    28.77         |   31.84         |  14.24       |
---------------------------------------------------------------------------------------------------
 2  |  clean-dropout0.8     | 6.78            |    25.89         |   26.45         |  12.57       |
---------------------------------------------------------------------------------------------------
 3  |  noise-20%-std        | 6.76            |    14.74         |   14.32         |  8.87        |
---------------------------------------------------------------------------------------------------
 4  |  noise-20%-dropout0.8 | 7.01            |    14.51         |   13.61         |  9.22        |
---------------------------------------------------------------------------------------------------
 5  |  noise-100%-std       | 9.03            |    11.21         |   11.44         |  7.96        |
---------------------------------------------------------------------------------------------------
 6  |  noise-100%-dropout0.8| 8.87            |    11.58         |   12.22         |  8.38        |
---------------------------------------------------------------------------------------------------
          2) The effect of MPE in different noise proportion;
          3) The effect of MPE+dropout in different noise proportion.
    • Find and test unknown noise test-data.(++)
    • Have done the droptout on normal trained XEnt NNET , eg wsj(learn-rate:1e-4/1e-5). Seems small learn-rate get the balance of accuracy and train-time.
  • MaxOut(+)
  • pretraining based maxout, can't use large learning-rate.
    • Select units in Groupsize interval, but need low learn-rate
  • SoftMaxout
  • P-norm
  • Need to solve the too small learning-rate problem
    • Add one normalization layer after the pnorm-layer
  • Convolutive network (+)
  • AURORA 4
 --------------------------------------------------------------------------------------------------------------------------
  nonlda                 | %WER      |Dnn l-u    | pool size-step| cnn dim-step-num                | cnn_init_opts
 --------------------------------------------------------------------------------------------------------------------------
  cnn_std                | 5.73      | 4 - 1200  | 3 - 3         | 8-1-128 512-128-256             |--patch-dim1 8 
                         |           |           |               |                                 |--input_dim~patch-dim1
 --------------------------------------------------------------------------------------------------------------------------
  cnn_cnnunit_384        | 5.85      | 4 - 1200  | 3 - 3         | 8-1-128 512-128-384             |--patch-dim1 8
                         |           |           |               |                                 |--num-filters2 384     
 --------------------------------------------------------------------------------------------------------------------------
  cnn_patchdim1_5        | 5.92      | 4 - 1200  | 3 - 3         | 5-1-128 512-128-256             |--patch-dim1 5
 --------------------------------------------------------------------------------------------------------------------------
  cnn_patchdim1_11       | 6.05      | 4 - 1200  | 3 - 3         | 11-1-128 512-128-256            |--patch-dim1 11
 --------------------------------------------------------------------------------------------------------------------------
  cnn_delta_1            | 5.98      | 4 - 1200  | 3 - 3         | 8-1-128 512-128-256             |--patch-dim1 8
 --------------------------------------------------------------------------------------------------------------------------
  cnn_delta_2            | 6.05      | 4 - 1200  | 3 - 3         | 8-1-128 512-128-256             |--patch-dim1 8
 --------------------------------------------------------------------------------------------------------------------------
  cnn_layer_3            | 6.00      | 4 - 1200  | 3 - 3 3 - 1   | 8-1-128 512-128-256 768-256-512 |--patch-dim1 8
 --------------------------------------------------------------------------------------------------------------------------
  cnn_layer_3_2          | 5.85      | 4 - 1200  | 3 - 3 2 - 2   | 8-1-128 512-128-256 768-256-512 |--patch-dim1 8
 --------------------------------------------------------------------------------------------------------------------------
  cnn_layer_3_3          | 5.73      | 4 - 1200  | 3 - 3 2 - 2   | 8-1-128 512-128-256 512-256-512 |--patch-dim1 8
 --------------------------------------------------------------------------------------------------------------------------
  cnn_layer_3_4          | 5.96      | 4 - 1200  | 3 - 3 2 - 2   | 8-1-128 512-128-256 256-256-512 |--patch-dim1 8
 --------------------------------------------------------------------------------------------------------------------------

DAE(Deep Atuo-Encode)

 (1) train_clean
   drop-retention/testcase(WER)| test_clean_wv1  | test_airport_wv1 | test_babble_wv1 | test_car_wv1 
  ---------------------------------------------------------------------------------------------------------
      std-xEnt-sigmoid-baseline| 6.04            |    29.91         |   27.76         | 16.37
  ---------------------------------------------------------------------------------------------------------
      std+dae_cmvn_noFT_2-1200 | 7.10            |    15.33         |   16.58         | 9.23
  ---------------------------------------------------------------------------------------------------------
   std+dae_cmvn_splice5_2-100  | 8.19            |    15.21         |   15.25         | 9.31
  ---------------------------------------------------------------------------------------------------------

Denoising & Farfield ASR

  • ICASSP paper submitted.
  • HOLD

VAD

  • Harmonics and Teager energy features being investigation (++)

Speech rate training

  • Data ready on tencent set; some errors on speech rate dependent model. error fixed.
  • Retrain new model(+)

Scoring

  • Timber Comparison done.
  • harmonics based timber comparison: frequency based feature is better. done
  • GMM based timber comparison is done. Similar to speaker recognition. done
  • TODO: Code checkin and technique report. done

Confidence

  • Reproduce the experiments on fisher dataset.
  • Use the fisher DNN model to decode all-wsj dataset
  • preparing scoring for puqiang data
  • HOLD

Speaker ID

  • Preparing GMM-based server.
  • EER ~ 4% (GMM-based system)--Text independent
  • EER ~ 6%(1s) / 0.5%(5s) (GMM-based system)--Text dependent
  • test different number of components; fast i-vector computing

Language ID

  • GMM-based language is ready.
  • Delivered to Jietong
  • Prepare the test-case

Voice Conversion

  • Yiye is reading materials(+)


Text Processing

LM development

Domain specific LM

  • domain lm
  • Sougou2T : kn-count continue .
  • lm v2.0 set up(this week)
  • new dict.
  • Released vocab v2.0 (mainly done by Dongxu) to JieTong.
  • using minimum size segmentation and artificial add the long word(like 中华人民共和国)
  • check the v2.0-dict with small data.

tag LM

  • summary done
  • need to do
  • tag Probability should test add the weight(hanzhenglong) and handover to hanzhenglong (hold)
  • make a summary about tag-lm and journal paper(wxx and yuanb)(this weeks).
  • Reviewed papers and begin to write paper (this week)

RNN LM

  • rnn
  • test wer RNNLM on Chinese data from jietong-data(this week)
  • generate the ngram model from rnnlm and test the ppl with different size txt.[1]
  • lstm+rnn
  • check the lstm-rnnlm code about how to Initialize and update learning rate.(hold)

Word2Vector

W2V based doc classification

  • Initial results variable Bayesian GMM obtained. Performance is not as good as the conventional GMM.(hold)
  • Non-linear inter-language transform: English-Spanish-Czch: wv model training done, transform model on investigation

Knowledge vector

  • Knowledge vector started
  • Analysis the wiki infomation of category and link into jso done, knowledge vector build graph done.
  • begin to code for train

relation

  • Accomplish transE with almost the same performance as the paper did(even better)[2]

Character to word

  • Character to word conversion(hold)
  • prepare the task: word similarity
  • prepare the dict.

Translation

  • v5.0 demo released
  • cut the dict and use new segment-tool

QA

deatil:

Spell mistake

  • add the xiaoI pingyin correct to framework.

improve fuzzy match

  • add Synonyms similarity using MERT-4 method(hold)

improve lucene search

  • using MERT-4 method to get good value of multi-feature.like IDF,NER,baidu_weight,keyword etc.(liurong this month)
  • now test the performance.

Multi-Scene Recognition

  • done

XiaoI framework

  • ner from xiaoI
  • new inter will install SEMPRE

patent

  • done