“2013-11-15”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
(以内容“== Data sharing == * LM count files still undelivered! == AM development == === Sparse DNN === * Optimal Brain Damage(OBD). * Online OBD. * Try 3 configurations...”创建新页面)
 
第9行: 第9行:
 
* Optimal Brain Damage(OBD).  
 
* Optimal Brain Damage(OBD).  
  
* Online OBD.  
+
# Basic OBD done, with the ICASSP paper submitted.
 
+
# Online OBD running
* Try 3 configurations: batch size=256, 13000 (10 prunings), whole data. The current results show that the the performance order is: whole data > 256 > 13000.
+
:* Try 3 configurations: batch size=256, 13000 (10 prunings), whole data.  
 
+
:* The current results show that the the performance follows the order: Acc(whole data) > Acc(256) > Acc(13000).
 +
:* Investigate some in-the-middle update, e.g., update twice for each iteration.
  
  
第18行: 第19行:
  
 
* Simulated Annealing training.  
 
* Simulated Annealing training.  
* Rejected with small noises. With clean training rejected after annealing.  
+
:* Rejected with small noises.  
 +
:* Using just the clean speech, it still rejected. This a bit strange.
  
 
* Noise concentrated training
 
* Noise concentrated training
 +
:* Using pure noise (no silence, narrow SNR band). Most of the results are expected.
 +
:* Need to check the case with  car-noise 20/25 db training and white noise 20 db test.
  
 
+
* Noise-adding modification
 +
:* Need to re-implement the noise-adding. Make it before the fbank computation.
  
 
=== Tencent exps ===
 
=== Tencent exps ===
第30行: 第35行:
 
==LM development==
 
==LM development==
  
===NN LM ===
+
==NN LM===
 +
 
 +
#  Results show better performance with NN rescoring.
 +
 
 +
<pre>
 +
                  2044      map    notetp3  record1900  general  online1  online2 speedup
 +
scal=  0.5 28.69 34.52 20.56   14.53 45.52 41.3 34.48 33.53
 +
scal = 0.6 28.3 34.28 20.67   14.05 45.34 40.73 33.81 32.71
 +
scal = 0.7 27.84 33.81 20.18   13.74 45.13 40.29 33.17 31.86
 +
scal = 0.8 27.58 33.87 19.16   13.53 44.92   40 32.82 31.74
 +
scal = 0.9 27.86 33.92 19.05   13.41 44.9 39.65 32.5 31.89
 +
scal = 0.95 27.79 34.07 19.05   13.56 44.83 39.76 32.41 31.68
 +
scal = 0.96 27.9 34.1 18.83   13.53 44.83 39.79 32.43 31.68
 +
scal = 0.97 27.94 34.15 18.83   13.47 44.82 39.78 32.44 31.89
 +
scal = 0.99 28.02 34.2 19   13.49 44.86 39.82 32.47 32.01
 +
 
 +
</pre>
 +
 
 +
==QA LM ==
  
===QA LM===
+
The QA model training done.  Test on the Sogou Q text.
  
# Tencent word segmentation system ready.  
+
{| class="wikitable"
# Collecting data for Q-LM training.
+
!! Data ! lexicon ! size ! size2 ! PPL ! PPL2
 +
||Q (10G)|15w |1.5G |800M| 301.64  | 317.19
 +
|-
 +
||QA(100G):11w |4.5G |1G | 287.134 | 315.695
 +
|-
 +
||QA(100G):8w8 |4.5G |1G  | 559.029 | 626.146
 +
|-
 +
|}

2013年11月18日 (一) 06:33的版本

Data sharing

  • LM count files still undelivered!

AM development

Sparse DNN

  • Optimal Brain Damage(OBD).
  1. Basic OBD done, with the ICASSP paper submitted.
  2. Online OBD running
  • Try 3 configurations: batch size=256, 13000 (10 prunings), whole data.
  • The current results show that the the performance follows the order: Acc(whole data) > Acc(256) > Acc(13000).
  • Investigate some in-the-middle update, e.g., update twice for each iteration.


Noisy training

  • Simulated Annealing training.
  • Rejected with small noises.
  • Using just the clean speech, it still rejected. This a bit strange.
  • Noise concentrated training
  • Using pure noise (no silence, narrow SNR band). Most of the results are expected.
  • Need to check the case with car-noise 20/25 db training and white noise 20 db test.
  • Noise-adding modification
  • Need to re-implement the noise-adding. Make it before the fbank computation.

Tencent exps

N/A


LM development

NN LM=

  1. Results show better performance with NN rescoring.
                  2044      map    notetp3   record1900  general  online1  online2 speedup
scal=  0.5	28.69	34.52	20.56	   14.53	 45.52	41.3	34.48	33.53
scal = 0.6	28.3	34.28	20.67	   14.05	 45.34	40.73	33.81	32.71
scal = 0.7	27.84	33.81	20.18	   13.74	 45.13	40.29	33.17	31.86
scal = 0.8	27.58	33.87	19.16	   13.53	 44.92	  40	32.82	31.74
scal = 0.9	27.86	33.92	19.05	   13.41	 44.9	39.65	32.5	31.89
scal = 0.95	27.79	34.07	19.05	   13.56	 44.83	39.76	32.41	31.68
scal = 0.96	27.9	34.1	18.83	   13.53	 44.83	39.79	32.43	31.68
scal = 0.97	27.94	34.15	18.83	   13.47	 44.82	39.78	32.44	31.89
scal = 0.99	28.02	34.2	19	   13.49	 44.86	39.82	32.47	32.01

QA LM

The QA model training done. Test on the Sogou Q text.

! Data ! lexicon ! size ! size2 ! PPL ! PPL2 Q (10G)|15w |1.5G |800M| 301.64 | 317.19
QA(100G):11w |4.5G |1G | 287.134 | 315.695
QA(100G):8w8 |4.5G |1G | 559.029 | 626.146