“第十二章 机器学习基本流程”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
扩展阅读
扩展阅读
第22行: 第22行:
 
* 百度百科:奥卡姆剃刀[https://baike.baidu.com/item/%E5%A5%A5%E5%8D%A1%E5%A7%86%E5%89%83%E5%88%80%E5%8E%9F%E7%90%86/10900565][http://baike.baidu.com/l/HUkXrXzT]
 
* 百度百科:奥卡姆剃刀[https://baike.baidu.com/item/%E5%A5%A5%E5%8D%A1%E5%A7%86%E5%89%83%E5%88%80%E5%8E%9F%E7%90%86/10900565][http://baike.baidu.com/l/HUkXrXzT]
 
* 维基百科:过拟合[http://aigraph.cslt.org/courses/12/Overfitting.pdf][http://aigraph.cslt.org/courses/12/過適.pdf]
 
* 维基百科:过拟合[http://aigraph.cslt.org/courses/12/Overfitting.pdf][http://aigraph.cslt.org/courses/12/過適.pdf]
* 维基百科:GPT-3 [http://aigraph.cslt.org/courses/12/GPT-3-zh.pdf][http://aigraph.cslt.org/courses/12/GPT-3-zh.pdf/]
+
* 维基百科:GPT-3 [http://aigraph.cslt.org/courses/12/GPT-3-zh.pdf][http://aigraph.cslt.org/courses/12/GPT-3-en.pdf]
 
* 机器之心:当谈论机器学习中的公平公正时,我们该谈论些什么?[https://www.jiqizhixin.com/articles/2020-06-03-11]
 
* 机器之心:当谈论机器学习中的公平公正时,我们该谈论些什么?[https://www.jiqizhixin.com/articles/2020-06-03-11]
 
* 机器之心:数据增强 [https://www.jiqizhixin.com/articles/2019-12-04-10]
 
* 机器之心:数据增强 [https://www.jiqizhixin.com/articles/2019-12-04-10]

2023年8月8日 (二) 09:43的版本

教学资料

  • 教学参考
  • 课件
  • 小清爱提问:什么是是梯度下降算法?[1]
  • 小清爱提问:什么是模拟退火算法?[2]
  • 小清爱提问:什么是奥卡姆剃刀准则? [3]
  • 小清爱提问:为什么说数据是人工智能的粮食?[4]

扩展阅读

  • 维基百科:没有免费的午餐定理 [5]
  • 维基百科:梯度下降法[6][7]
  • 百度百科:梯度下降法[8][9]
  • 知乎:梯度下降法[10]
  • 知乎:小批量梯度下降法[11]
  • 知乎:动量梯度下降法[12][]
  • 维基百科:模拟退火算法 [13][14]
  • 百度百科:模拟退火算法[15][16]
  • 知乎:模拟退火详解 [17]
  • 维基百科:牛顿法 [18][19]
  • 维基百科:奥卡姆剃刀[20][21]
  • 百度百科:奥卡姆剃刀[22][23]
  • 维基百科:过拟合[24][25]
  • 维基百科:GPT-3 [26][27]
  • 机器之心:当谈论机器学习中的公平公正时,我们该谈论些什么?[28]
  • 机器之心:数据增强 [29]
  • 知乎:数据增强 [30][31]
  • 什么是模型预训练[32]
  • 迁移学习 [33]

视频展示

  • 奥卡姆剃刀 [34]
  • 为你读书 || 你必须了解的四个概念之二:奥卡姆剃刀原理 [35]


演示链接

  • 优化方法在线演示 [36]
  • 基于神经网络的二分类任务演示 [37]

开发者资源

高级读者

  • 王东,机器学习导论,第一章“绪论”,第十一章“优化方法”[38]
  • Wolpert, David (1996), "The Lack of A Priori Distinctions between Learning Algorithms", Neural Computation, pp. 1341–1390 [39]
  • Sebastian Ruder, An overview of gradient descend algorithms,2017 [40]
  • Kirkpatrick, S.; Gelatt Jr, C. D.; Vecchi, M. P. (1983). "Optimization by Simulated Annealing". Science. 220 (4598): 671–680. [41]
  • Brown et al., Language Models are Few-Shot Learners [42]