“CN-Celeb”版本间的差异
来自cslt Wiki
第45行: | 第45行: | ||
===Download=== | ===Download=== | ||
+ | |||
+ | * Local (not recommended) | ||
+ | wav.tgz : <a href=http://cslt.riit.tsinghua.edu.cn/~data/CN-Celeb/wav.tgz>speech data[30GB]</a> | ||
+ | info.txt : <a href=http://cslt.riit.tsinghua.edu.cn/~data/CN-Celeb/info.txt>info</a> | ||
+ | about.html : <a href=http://cslt.riit.tsinghua.edu.cn/~data/CN-Celeb/about.html>about</a> | ||
+ | index.html : <a href=http://cslt.riit.tsinghua.edu.cn/~data/CN-Celeb/index.html>this file</a> | ||
+ | |||
+ | |||
+ | |||
+ | |||
===Future Plans=== | ===Future Plans=== |
2019年11月14日 (四) 01:50的版本
目录
Introduction
- CN-Celeb, a large-scale Chinese celebrities dataset published by Center for Speech and Language Technology (CSLT) at Tsinghua University.
Members
- Current:Dong Wang, Yunqi Cai, Lantian Li, Yue Fan, Jiawen Kang
- History:Ziya Zhou, Kaicheng Li, Haolin Chen, Sitong Cheng, Pengyuan Zhang
Description
- Collect audio data of 1,000 Chinese celebrities.
- Automatically clip videos through a pipeline including face detection, face recognition, speaker validation and speaker diarization.
- Create a benchmark database for speaker recognition community.
Basic Methods
- Environments: Tensorflow, PyTorch, Keras, MxNet
- Face detection and tracking: RetinaFace and ArcFace models.
- Active speaker verification: SyncNet model.
- Speaker diarization: UIS-RNN model.
- Double check by speaker recognition: VGG model.
- Input: pictures and videos of POIs (Persons of Interest).
- Output: well-labelled videos of POIs (Persons of Interest).
Reports
Publications
@misc{fan2019cnceleb, title={CN-CELEB: a challenging Chinese speaker recognition dataset}, author={Yue Fan and Jiawen Kang and Lantian Li and Kaicheng Li and Haolin Chen and Sitong Cheng and Pengyuan Zhang and Ziya Zhou and Yunqi Cai and Dong Wang}, year={2019}, eprint={1911.01799}, archivePrefix={arXiv}, primaryClass={eess.AS} }
Source Code
- Collection Pipeline: celebrity-audio-collection
- Baseline Systems: kaldi-cn-celeb
Download
- Local (not recommended)
wav.tgz : <a href=http://cslt.riit.tsinghua.edu.cn/~data/CN-Celeb/wav.tgz>speech data[30GB]</a> info.txt : <a href=http://cslt.riit.tsinghua.edu.cn/~data/CN-Celeb/info.txt>info</a> about.html : <a href=http://cslt.riit.tsinghua.edu.cn/~data/CN-Celeb/about.html>about</a> index.html : <a href=http://cslt.riit.tsinghua.edu.cn/~data/CN-Celeb/index.html>this file</a>
Future Plans
- Augment the database to 10,000 people.
- Build a model between SyncNet and Speaker_Diarization based on LSTM, which can learn the relationship of them.
License
- All the resources contained in the database are free for research institutes and individuals.
- No commerical usage is permitted.
References
- Deng et al., "RetinaFace: Single-stage Dense Face Localisation in the Wild", 2019. [1]
- Deng et al., "ArcFace: Additive Angular Margin Loss for Deep Face Recognition", 2018, [2]
- Wang et al., "CosFace: Large Margin Cosine Loss for Deep Face Recognition", 2018, [3]
- Liu et al., "SphereFace: Deep Hypersphere Embedding for Face Recognition", 2017[4]
- Zhong et al., "GhostVLAD for set-based face recognition", 2018. [5]
- Chung et al., "Out of time: automated lip sync in the wild", 2016.[6]
- Xie et al., "Utterance-level Aggregation For Speaker Recognition In The Wild", 2019. [7]
- Zhang1 et al., "Fully Supervised Speaker Diarization", 2018. [8]