“Vivi-poem-generation”版本间的差异
来自cslt Wiki
第21行: | 第21行: | ||
* Local attention on previous generation, with couplet assignment (line number?) (+) | * Local attention on previous generation, with couplet assignment (line number?) (+) | ||
* N-best decoding (+) | * N-best decoding (+) | ||
+ | |||
+ | ===实现细节=== | ||
+ | |||
+ | * Rythms with less characters removed | ||
+ | * Characters seldom used as rhythms words are removed | ||
+ | * Characters that are low-frequency are removed | ||
===特性=== | ===特性=== |
2017年2月12日 (日) 10:24的版本
目录
薇薇:会写诗的机器人
vivi 3.0 (on going)
目标
- Transfer modern sentences to poems
- Utilize extra knowledge to boost innovation
- Reinforcement learning to improve quality
vivi 2.0
基本方法
- Tensorflow 实现
- Attention-based LSTM/GRU S2S
- Sampling words as input to generate the present sentence
- Memory augmentation (global and local)
- Local attention for theme (+)
- Local attention on previous generation, with couplet assignment (line number?) (+)
- N-best decoding (+)
实现细节
- Rythms with less characters removed
- Characters seldom used as rhythms words are removed
- Characters that are low-frequency are removed
特性
- 训练基础模型,用memory实现精细创新
- 用memory可实现风格、体例转换
- 用Local attention可实现人为指导创作(+)
- 可实现律诗中的对仗
测试结果
论文
vivi 1.0
基本方法
- Theano 实现
- 基于sequence-to-sequence的LSTM/GRU模型, 运用Attention 机制。
- 输入为一首诗的第一句,输出为后面所有句子
- 预训练word vectors,用多种体例古文结合在一起训练
- 生成时可对用户输入进行扩展
测试结果
论文
Song Iambics Generation with Neural Attention-based Model, IJCAI2016