“ASR:2015-12-1”版本间的差异
来自cslt Wiki
(→Environment) |
(→Speech Processing) |
||
第38行: | 第38行: | ||
* metric learning | * metric learning | ||
* LDA-vector Transfer Learning | * LDA-vector Transfer Learning | ||
− | + | ||
===language vector=== | ===language vector=== | ||
第49行: | 第49行: | ||
* RNN language vector | * RNN language vector | ||
:*hold | :*hold | ||
+ | * train with extra input of speech rate info | ||
===multi-GPU=== | ===multi-GPU=== | ||
第58行: | 第59行: | ||
:*http://192.168.0.51:5555/cgi-bin/cvss/cvss_request.pl?account=zxw&step=view_request&cvssid=472 | :*http://192.168.0.51:5555/cgi-bin/cvss/cvss_request.pl?account=zxw&step=view_request&cvssid=472 | ||
* train 7*2048 tdnn using 4000h data --Mengyuan | * train 7*2048 tdnn using 4000h data --Mengyuan | ||
− | + | * train mpe using wsj and aurara4 --Zhiyong,Xuewei | |
+ | |||
===multi-task=== | ===multi-task=== | ||
* test according to selt-information neural structure learning --mengyuan | * test according to selt-information neural structure learning --mengyuan |
2015年12月1日 (二) 07:30的版本
目录
- 1 Speech Processing
- 2 Text Processing
- 3 financial group
Speech Processing
AM development
Environment
RNN AM
- train monophone RNN --zhiyuan
- end to end MPE
- end to end using nnet3
- http://192.168.0.51:5555/cgi-bin/cvss/cvss_request.pl?account=zxw&step=view_request&cvssid=446
Adapative learning rate method
- sequence training -Xiangyu
- write a technique report
- http://192.168.0.51:5555/cgi-bin/cvss/cvss_request.pl?account=zxw&step=view_request&cvssid=458
Mic-Array
- hold
- compute EER with kaldi
Data selection unsupervised learning
- hold
- acoustic feature based submodular using Pingan dataset --zhiyong
- write code to speed up --zhiyong
- curriculum learning --zhiyong
RNN-DAE(Deep based Auto-Encode-RNN)
- hold
- RNN-DAE has worse performance than DNN-DAE because training dataset is small
- extract real room impulse to generate WSJ reverberation data, and then train RNN-DAE
Ivector&Dvector based ASR
- learning from ivector --Lantian
- CNN ivector learning
- DNN ivector learning
- binary ivector
- metric learning
- LDA-vector Transfer Learning
language vector
- write a paper--zhiyuan
- hold
- language vector is added to multi hidden layers--zhiyuan
- write code done
- check code
- http://192.168.0.51:5555/cgi-bin/cvss/cvss_request.pl?account=zxw&step=view_request&cvssid=480
- RNN language vector
- hold
- train with extra input of speech rate info
multi-GPU
- multi-stream training --Sheng Su
- write a technique report
- kaldi-nnet3 --Xuewei
- 7*2048 8k 1400h tdnn training Xent done
- nnet3 mpe code is under investigation
- http://192.168.0.51:5555/cgi-bin/cvss/cvss_request.pl?account=zxw&step=view_request&cvssid=472
- train 7*2048 tdnn using 4000h data --Mengyuan
- train mpe using wsj and aurara4 --Zhiyong,Xuewei
multi-task
- test according to selt-information neural structure learning --mengyuan
- hold
- write code done
- no significant performance improvement observed
- speech rate learning --xiangyu
- hold
- no significant performance improvement observed
- http://192.168.0.51:5555/cgi-bin/cvss/cvss_request.pl?account=zxw&step=view_request&cvssid=483
- test using extreme data
Text Processing
RNN LM
- character-lm rnn(hold)
- lstm+rnn
- check the lstm-rnnlm code about how to Initialize and update learning rate.(hold)
Neural Based Document Classification
- (hold)
RNN Rank Task
- Test.
- Paper: RNN Rank Net.
- (hold)
- Output rank information.
Graph RNN
- Entity path embeded to entity.
- (hold)
RNN Word Segment
- Set bound to word segment.
- (hold)
Seq to Seq(09-15)
- Review papers.
- Reproduce baseline. (08-03 <--> 08-17)
Order representation
- Nested Dropout
- semi-linear --> neural based auto-encoder.
- modify the objective function(hold)
Balance Representation
- Find error signal
Recommendation
- Reproduce baseline.
- LDA matrix dissovle.
- LDA (Text classification & Recommendation System) --> AAAI
RNN based QA
- Read Source Code.
- Attention based QA.
- Coding.
RNN Poem Process
- Seq based BP.
- (hold)
Text Group Intern Project
Buddhist Process
- (hold)
RNN Poem Process
- Done by Haichao yu & Chaoyuan zuo Mentor : Tianyi Luo.
RNN Document Vector
- (hold)
Image Baseline
- Demo Release.
- Paper Report.
- Read CNN Paper.
Text Intuitive Idea
Trace Learning
- (Hold)
Match RNN
- (Hold)
financial group
model research
- RNN
- online model, update everyday
- modify cost function and learning method
- add more feature
rule combination
- GA method to optimize the model
basic rule
- classical tenth model
multiple-factor
- add more factor
- use sparse model
display
- bug fixed
- buy rule fixed
data
- data api
- download the future data and factor data