“ASR:2015-07-27”版本间的差异
来自cslt Wiki
(→Text Processing) |
(→Seq to Seq(09-15)) |
||
第75行: | 第75行: | ||
====Seq to Seq(09-15)==== | ====Seq to Seq(09-15)==== | ||
− | + | * Review papers. | |
− | * Reproduce baseline. | + | * Reproduce baseline. (08-03) |
====Order representation ==== | ====Order representation ==== |
2015年7月27日 (一) 02:00的版本
目录
- 1 Speech Processing
- 2 audio embedding=
- 3 Text Processing
Speech Processing
AM development
Environment
- grid-14 is on reparation
- prepare to buy a server
RNN AM
- hold
- morpheme RNN --zhiyuan
- train using 1400h large dataset--mengyuan
Mic-Array
- hold
- compute EER with kaldi
====Data selection unsupervised learning
- hold
- acoustic feature based submodular using Pinan dataset --zhiyong
- write code to speed up --zhiyong
RNN-DAE(Deep based Auto-Encode-RNN)
- hold
- deliver to mengyuan
Speaker ID
- DNN-based sid --Lantian
Ivector&Dvector based ASR
- hold --Tian Lan
- Cluster the speakers to speaker-classes, then using the distance or the posterior-probability as the metric
- dark-konowlege using i-vector
- train on wsj(testbase dev93+evl92)
- --hold
Dark knowledge
- hold
- test random last output layer when train MPE --zhiyuan,mengyuan
language vector
- train using language vector with the dataset of 1400h_CN + 100h_EN--mengyuan
- hold
- write a paper--zhiyuan
rectifier
- hold
- rectifier RNN
monophone
- triphone is tranfered to monophone
audio embedding=
- audio ebedding --Wei Xu
Text Processing
RNN LM
- character-lm rnn(hold)
- lstm+rnn
- check the lstm-rnnlm code about how to Initialize and update learning rate.(hold)
Neural Based Document Classification
- (hold)
RNN Rank Task
- (hold)
RNN Word Segment
- (hold)
Seq to Seq(09-15)
- Review papers.
- Reproduce baseline. (08-03)
Order representation
- Nested Dropout
- semi-linear --> neural based auto-encoder.
- modify the objective function(hold)
Balance Representation
- Find error signal
Recommendation
- Reproduce baseline.
- LDA matrix dissovle.
- LDA (Text classification & Recommendation System) --> AAAI
DSSM based QA
- Demo Release.(English done.)
- Chinese Model start.
RNN based QA
- Read Source Code.
Text Group Intern Project
Buddhist Process
(hold)
RNN Poem Process
- Read Paper & Source Code.
RNN Document Vector
(hold)
Image Baseline
- Demo Release.
- Paper Report.
- Read CNN Paper.