“ASR:2015-07-20”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
Image Baseline
Zxw讨论 | 贡献
Speech Processing
 
第3行: 第3行:
  
 
==== Environment ====
 
==== Environment ====
* the GPU of grid-14 does not work
+
* grid-14 is on reparation
 +
* prepare to buy a server
 +
 
  
 
==== RNN AM====
 
==== RNN AM====
 
*hold  
 
*hold  
 
*morpheme RNN --zhiyuan
 
*morpheme RNN --zhiyuan
*train using large dataset--mengyuan
+
*train using 1400h large dataset--mengyuan
  
 
==== Mic-Array ====
 
==== Mic-Array ====
第15行: 第17行:
  
 
====Data selection unsupervised learning
 
====Data selection unsupervised learning
 +
* hold
 
* acoustic feature based submodular using Pinan dataset --zhiyong
 
* acoustic feature based submodular using Pinan dataset --zhiyong
 
* write code to speed up --zhiyong
 
* write code to speed up --zhiyong
第37行: 第40行:
  
 
===Dark knowledge===
 
===Dark knowledge===
 +
* hold
 
* test random last output layer when train MPE --zhiyuan,mengyuan
 
* test random last output layer when train MPE --zhiyuan,mengyuan
  
第42行: 第46行:
 
===language vector===
 
===language vector===
 
* train using language vector with the dataset of 1400h_CN + 100h_EN--mengyuan
 
* train using language vector with the dataset of 1400h_CN + 100h_EN--mengyuan
 +
:* hold
 
* write a paper--zhiyuan
 
* write a paper--zhiyuan
  
 
===rectifier===
 
===rectifier===
 
* hold  
 
* hold  
* WER performs worse using auraro4 --zhiyuan
 
* train using other dataset
 
 
* rectifier RNN
 
* rectifier RNN
 +
 +
===monophone===
 +
* triphone is tranfered to monophone
  
 
==audio embedding===
 
==audio embedding===

2015年7月22日 (三) 08:20的最后版本

Speech Processing

AM development

Environment

  • grid-14 is on reparation
  • prepare to buy a server


RNN AM

  • hold
  • morpheme RNN --zhiyuan
  • train using 1400h large dataset--mengyuan

Mic-Array

  • hold
  • compute EER with kaldi

====Data selection unsupervised learning

  • hold
  • acoustic feature based submodular using Pinan dataset --zhiyong
  • write code to speed up --zhiyong


RNN-DAE(Deep based Auto-Encode-RNN)

  • hold
  • deliver to mengyuan

Speaker ID

  • DNN-based sid --Lantian


Ivector&Dvector based ASR

  • hold --Tian Lan
  • Cluster the speakers to speaker-classes, then using the distance or the posterior-probability as the metric
  • dark-konowlege using i-vector
  • train on wsj(testbase dev93+evl92)
  • --hold

Dark knowledge

  • hold
  • test random last output layer when train MPE --zhiyuan,mengyuan


language vector

  • train using language vector with the dataset of 1400h_CN + 100h_EN--mengyuan
  • hold
  • write a paper--zhiyuan

rectifier

  • hold
  • rectifier RNN

monophone

  • triphone is tranfered to monophone

audio embedding=

  • audio ebedding --Wei Xu

Text Processing

RNN LM

  • character-lm rnn(hold)
  • lstm+rnn
  • check the lstm-rnnlm code about how to Initialize and update learning rate.(hold)

Neural Based Document Classification

  • (hold)

Order representation

  • Nested Dropout
  • semi-linear --> neural based auto-encoder.
  • modify the objective function(hold)

Balance Representation

  • Find error signal

Recommendation

  • Reproduce baseline.
  • LDA matrix dissovle.
  • LDA (Text classification & Recommendation System) --> AAAI

DSSM based QA

  • Demo Release.(English done.)
  • Chinese Model start.

RNN based QA

  • Read Source Code.

Seq to Seq(09-15)

  • Review papers.(Reported in 07-08)
  • Reproduce baseline.

Text Group Intern Project

Buddhist Process

(hold)

RNN Poem Process

  • Read Paper & Source Code.

RNN Document Vector

(hold)

Image Baseline

  • Demo Release.
  • Paper Report.
  • Read CNN Paper.