“ASR:2015-06-29”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
Speech Processing
Text Processing
 
第47行: 第47行:
 
:* check the lstm-rnnlm code about how to Initialize and update learning rate.(hold)
 
:* check the lstm-rnnlm code about how to Initialize and update learning rate.(hold)
  
====W2V based document classification====
+
====Neural Based Document Classification====
* APSIPA paper
+
* (hold)
* CNN adapt to resolve the low resource problem
+
===Pair-wise LM===
+
* draft paper of journal
+
  
 
===Order representation ===
 
===Order representation ===
 +
* Nested Dropout
 
* modify the objective function(hold)
 
* modify the objective function(hold)
* sup-sampling method to solve the low frequence word(hold)
+
===Balance Representation===
* journal paper
+
* Find error signal
  
===binary vector===
+
===Recommendation===
* nips paper
+
* Reproduce baseline.
===Stochastic ListNet===
+
*done
+
  
===relation classifier===
+
===DSSM based QA===
*done
+
* Reproduce baseline.
 
+
===plan to do===
+
* combine LDA with neural network
+

2015年7月2日 (四) 12:44的最后版本

Speech Processing

AM development

Environment

RNN AM

  • morpheme RNN --zhiyuan


Mic-Array

  • hold
  • compute EER with kaldi

====Data selection unsupervised learning

  • train using aurora4 --zhiyong
  • train using wsj --xuewei

RNN-DAE(Deep based Auto-Encode-RNN)

  • hold
  • deliver to mengyuan

Speaker ID

  • DNN-based sid --Lantian


Ivector&Dvector based ASR

  • hold --Tian Lan
  • Cluster the speakers to speaker-classes, then using the distance or the posterior-probability as the metric
  • dark-konowlege using i-vector
  • train on wsj(testbase dev93+evl92)
  • --hold

Dark knowledge

  • test random last output layer when train MPE --zhiyuan


language vector

  • hold

Text Processing

RNN LM

  • character-lm rnn(hold)
  • lstm+rnn
  • check the lstm-rnnlm code about how to Initialize and update learning rate.(hold)

Neural Based Document Classification

  • (hold)

Order representation

  • Nested Dropout
  • modify the objective function(hold)

Balance Representation

  • Find error signal

Recommendation

  • Reproduce baseline.

DSSM based QA

  • Reproduce baseline.