“ASR:2015-06-29”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
(以“==Speech Processing == === AM development === ==== Environment ==== *grid-14 does not work --mengyuan *grid-15 runs slowly ==== RNN AM==== *morpheme RNN --zhiyuan...”为内容创建页面)
 
Zxw讨论 | 贡献
Speech Processing
第3行: 第3行:
  
 
==== Environment ====
 
==== Environment ====
*grid-14 does not work --mengyuan
+
 
*grid-15 runs slowly
+
  
 
==== RNN AM====
 
==== RNN AM====
 
*morpheme RNN --zhiyuan
 
*morpheme RNN --zhiyuan
*RNN MPE --zhiyuan and xuewei
+
 
  
 
==== Mic-Array ====
 
==== Mic-Array ====
 
* hold  
 
* hold  
 
* compute EER with kaldi
 
* compute EER with kaldi
 +
 +
====Data selection unsupervised learning
 +
* train using aurora4 --zhiyong
 +
* train using wsj --xuewei
  
 
====RNN-DAE(Deep based Auto-Encode-RNN)====
 
====RNN-DAE(Deep based Auto-Encode-RNN)====
第32行: 第35行:
  
 
===Dark knowledge===
 
===Dark knowledge===
* test random last output layer when train MPE--zhiyuan
+
* test random last output layer when train MPE --zhiyuan
  
  
 
===language vector===
 
===language vector===
* hold --xuewei
+
* hold
* train using chinese and chiglish
+
  
 
==Text Processing==
 
==Text Processing==

2015年7月1日 (三) 08:07的版本

Speech Processing

AM development

Environment

RNN AM

  • morpheme RNN --zhiyuan


Mic-Array

  • hold
  • compute EER with kaldi

====Data selection unsupervised learning

  • train using aurora4 --zhiyong
  • train using wsj --xuewei

RNN-DAE(Deep based Auto-Encode-RNN)

  • hold
  • deliver to mengyuan

Speaker ID

  • DNN-based sid --Lantian


Ivector&Dvector based ASR

  • hold --Tian Lan
  • Cluster the speakers to speaker-classes, then using the distance or the posterior-probability as the metric
  • dark-konowlege using i-vector
  • train on wsj(testbase dev93+evl92)
  • --hold

Dark knowledge

  • test random last output layer when train MPE --zhiyuan


language vector

  • hold

Text Processing

RNN LM

  • character-lm rnn(hold)
  • lstm+rnn
  • check the lstm-rnnlm code about how to Initialize and update learning rate.(hold)

W2V based document classification

  • APSIPA paper
  • CNN adapt to resolve the low resource problem

Pair-wise LM

  • draft paper of journal

Order representation

  • modify the objective function(hold)
  • sup-sampling method to solve the low frequence word(hold)
  • journal paper

binary vector

  • nips paper

Stochastic ListNet

  • done

relation classifier

  • done

plan to do

  • combine LDA with neural network