“Multi query in multi field”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
test result
test result
第114行: 第114行:
  
 
=test result=
 
=test result=
[z-mert]
+
[Z-MERT]
 +
*The default argument(patern:1.0 sq:1.0)
 +
:*test result:0.6697994987468672
 +
*Use MERT method and get the argument(patern:1.811676798378926, sq:1.0)
 +
:*test result:0.6779448621553885

2014年12月9日 (二) 07:13的版本

check the detail of Lucene score

data

 d0 [{如何,怎么}} {办理,办} {户口,户口本} # 到当地派出所办理  # 如何办理户口
 d1 {办理,办} {户口,户口本} [{流程,步骤}] # 到当地派出所办理  # 如何办理户口
 d2 [{如何,怎么}} {办理,办} {身份证,身份} # 到当地派出所办理  # 如何办理身份证
 d3 {办理,办} {身份证} [{流程,步骤}] # 到当地派出所办理  # 如何办理身份证

搜索

query:"如何办理户口"  => question:如何 question:办理户口

result

 doc=0 score=0.114656925 shardIndex=-1|0.114656925 = (MATCH) product of:
   0.22931385 = (MATCH) sum of:
     0.22931385 = (MATCH) weight(question:如何 in 0) [DefaultSimilarity], result of:
       0.22931385 = score(doc=0,freq=1.0 = termFreq=1.0
 ), product of:
       0.4748871 = queryWeight, product of:
         1.287682 = idf(docFreq=2, maxDocs=4)
         0.3687922 = queryNorm
       0.48288077 = fieldWeight in 0, product of:
         1.0 = tf(freq=1.0), with freq of:
           1.0 = termFreq=1.0
         1.287682 = idf(docFreq=2, maxDocs=4)
         0.375 = fieldNorm(doc=0)
  0.5 = coord(1/2)
  • 详细计算流score(query,d0)
  • 参考公式:[1]
QQ截图20141128164958.png
  • tf("如何" in d0)=sqrt{frequency}= sqrt{1}=1
  • idf("如何")=<math>1+ln( {numDocs}/{docFreq+1})=1+ln( {4}/{2+1} )
  • 如何".getboost=1
  • coord(如何,d0) : 0.5 = coord(1/2)
   coord(t,d)=overlap  /maxOverlap .
   overlap - the number of query terms matched in the document
   maxOverlap - the total number of terms in the query
  • queryNorm(q)= 1/sqrt(sumOfSquaredWeights)=1/sqrt(sum(idf("如何")*1+idf("办理户口")))=1/sqrt(1*(1.287682*1.287682+2.386*2.386))=0.3687.
  sumOfSquaredWeights   =   q.getBoost()*q.getBoost()*∑( idf(t) *t.getBoost() )^2

mutli

data

 d0 [{如何,怎么}} {办理,办} {户口,户口本} # 到当地派出所办理  # 如何办理户口
 d1 {办理,办} {户口,户口本} [{流程,步骤}] # 到当地派出所办理  # 如何办理户口
 d2 [{如何,怎么}} {办理,办} {身份证,身份} # 到当地派出所办理  # 如何办理身份证
 d3 {办理,办} {身份证} [{流程,步骤}] # 到当地派出所办理  # 如何办理身份证

搜索

code

 BooleanQuery query = new BooleanQuery();
 query.add(paternQuery, Occur.MUST); // or Occur.SHOULD if this clause is optional
 query.add(ansQuery, Occur.SHOULD); // or Occur.MUST if this clause is required
 query.add(sqQuery, Occur.SHOULD);   

search:

  +((question:如何 question:办理户口)^0.8) ((answer:如何 answer:办理户口)^0.2) ((standardq:如何 standardq:办理户口)^0.2)

result

  • 计算公式
  • score(Q)=score(q_PTN)+score(q_ANS)+score(q_STD)
  • querynorm(Q),Q=q_PTN+q_ANS+q_STD
  • sumOfSquaredWeights = ∑{q.getBoost()*q.getBoost()*∑( idf(t) *t.getBoost() )^2},q={q_PTN , q_STD, q_ANS}
  • queryNorm(Q)= 1/sqrt(sumOfSquaredWeights)
  • field patern
  • tf("如何" in d0)=sqrt{frequency}= sqrt{1}=1
  • idf("如何")=<math>1+ln( {numDocs}/{docFreq+1})=1+ln( {4}/{2+1} )
  • 如何".getboost=1
  • coord(如何,d0) : 0.5 = coord(1/2)
   coord(t,d)=overlap  /maxOverlap .
   overlap - the number of query terms matched in the document
   maxOverlap - the total number of terms in the query
  • queryNorm(q_PTN)=querynorm(Q)*boost(q_PTN)
  • Norm
  • detail
  • filed: answer+pattern
    score(q,filed-pattern)+score(q,filed-answer)
    
 doc=0 score=0.15459718 shardIndex=-1|0.1545972 = (MATCH) product of:
 0.23189577 = (MATCH) sum of:[all]
   0.108532876 = (MATCH) product of:[filed:pattern]
     0.21706575 = (MATCH) sum of:
       0.21706575 = (MATCH) weight(question:如何 in 0) [DefaultSimilarity], result of:
         0.21706575 = score(doc=0,freq=1.0 = termFreq=1.0
 ), product of:
           0.44952247 = queryWeight, product of:
             1.287682 = idf(docFreq=2, maxDocs=4)
             0.3490943 = queryNorm
           0.48288077 = fieldWeight in 0, product of:
             1.0 = tf(freq=1.0), with freq of:
               1.0 = termFreq=1.0
             1.287682 = idf(docFreq=2, maxDocs=4)
             0.375 = fieldNorm(doc=0)
     0.5 = coord(1/2)
   0.12336289 = (MATCH) sum of:[field:answer]
     0.032918826 = (MATCH) weight(answer:如何 in 0) [DefaultSimilarity], result of:
       0.032918826 = score(doc=0,freq=1.0 = termFreq=1.0
 ), product of:
         0.06779904 = queryWeight, product of:
           0.7768564 = idf(docFreq=4, maxDocs=4)
           0.087273575 = queryNorm
         0.48553526 = fieldWeight in 0, product of:
           1.0 = tf(freq=1.0), with freq of:
             1.0 = termFreq=1.0
           0.7768564 = idf(docFreq=4, maxDocs=4)
           0.625 = fieldNorm(doc=0)
     0.090444066 = (MATCH) weight(answer:办理户口 in 0) [DefaultSimilarity], result of:
       0.090444066 = score(doc=0,freq=1.0 = termFreq=1.0
 ), product of:
         0.11238062 = queryWeight, product of:
           1.287682 = idf(docFreq=2, maxDocs=4)
           0.087273575 = queryNorm
         0.8048013 = fieldWeight in 0, product of:
           1.0 = tf(freq=1.0), with freq of:
             1.0 = termFreq=1.0
           1.287682 = idf(docFreq=2, maxDocs=4)
           0.625 = fieldNorm(doc=0)
 0.6666667 = coord(2/3)

test result

[Z-MERT]

  • The default argument(patern:1.0 sq:1.0)
  • test result:0.6697994987468672
  • Use MERT method and get the argument(patern:1.811676798378926, sq:1.0)
  • test result:0.6779448621553885