“2013-11-15”版本间的差异
来自cslt Wiki
(以内容“== Data sharing == * LM count files still undelivered! == AM development == === Sparse DNN === * Optimal Brain Damage(OBD). * Online OBD. * Try 3 configurations...”创建新页面) |
|||
第9行: | 第9行: | ||
* Optimal Brain Damage(OBD). | * Optimal Brain Damage(OBD). | ||
− | + | # Basic OBD done, with the ICASSP paper submitted. | |
− | + | # Online OBD running | |
− | * Try 3 configurations: batch size=256, 13000 (10 prunings), whole data. The current results show that the the performance order | + | :* Try 3 configurations: batch size=256, 13000 (10 prunings), whole data. |
− | + | :* The current results show that the the performance follows the order: Acc(whole data) > Acc(256) > Acc(13000). | |
+ | :* Investigate some in-the-middle update, e.g., update twice for each iteration. | ||
第18行: | 第19行: | ||
* Simulated Annealing training. | * Simulated Annealing training. | ||
− | * Rejected with small noises. | + | :* Rejected with small noises. |
+ | :* Using just the clean speech, it still rejected. This a bit strange. | ||
* Noise concentrated training | * Noise concentrated training | ||
+ | :* Using pure noise (no silence, narrow SNR band). Most of the results are expected. | ||
+ | :* Need to check the case with car-noise 20/25 db training and white noise 20 db test. | ||
− | + | * Noise-adding modification | |
+ | :* Need to re-implement the noise-adding. Make it before the fbank computation. | ||
=== Tencent exps === | === Tencent exps === | ||
第30行: | 第35行: | ||
==LM development== | ==LM development== | ||
− | + | ==NN LM=== | |
+ | |||
+ | # Results show better performance with NN rescoring. | ||
+ | |||
+ | <pre> | ||
+ | 2044 map notetp3 record1900 general online1 online2 speedup | ||
+ | scal= 0.5 28.69 34.52 20.56 14.53 45.52 41.3 34.48 33.53 | ||
+ | scal = 0.6 28.3 34.28 20.67 14.05 45.34 40.73 33.81 32.71 | ||
+ | scal = 0.7 27.84 33.81 20.18 13.74 45.13 40.29 33.17 31.86 | ||
+ | scal = 0.8 27.58 33.87 19.16 13.53 44.92 40 32.82 31.74 | ||
+ | scal = 0.9 27.86 33.92 19.05 13.41 44.9 39.65 32.5 31.89 | ||
+ | scal = 0.95 27.79 34.07 19.05 13.56 44.83 39.76 32.41 31.68 | ||
+ | scal = 0.96 27.9 34.1 18.83 13.53 44.83 39.79 32.43 31.68 | ||
+ | scal = 0.97 27.94 34.15 18.83 13.47 44.82 39.78 32.44 31.89 | ||
+ | scal = 0.99 28.02 34.2 19 13.49 44.86 39.82 32.47 32.01 | ||
+ | |||
+ | </pre> | ||
+ | |||
+ | ==QA LM == | ||
− | + | The QA model training done. Test on the Sogou Q text. | |
− | + | {| class="wikitable" | |
− | + | !! Data ! lexicon ! size ! size2 ! PPL ! PPL2 | |
+ | ||Q (10G)|15w |1.5G |800M| 301.64 | 317.19 | ||
+ | |- | ||
+ | ||QA(100G):11w |4.5G |1G | 287.134 | 315.695 | ||
+ | |- | ||
+ | ||QA(100G):8w8 |4.5G |1G | 559.029 | 626.146 | ||
+ | |- | ||
+ | |} |
2013年11月18日 (一) 06:33的版本
目录
Data sharing
- LM count files still undelivered!
AM development
Sparse DNN
- Optimal Brain Damage(OBD).
- Basic OBD done, with the ICASSP paper submitted.
- Online OBD running
- Try 3 configurations: batch size=256, 13000 (10 prunings), whole data.
- The current results show that the the performance follows the order: Acc(whole data) > Acc(256) > Acc(13000).
- Investigate some in-the-middle update, e.g., update twice for each iteration.
Noisy training
- Simulated Annealing training.
- Rejected with small noises.
- Using just the clean speech, it still rejected. This a bit strange.
- Noise concentrated training
- Using pure noise (no silence, narrow SNR band). Most of the results are expected.
- Need to check the case with car-noise 20/25 db training and white noise 20 db test.
- Noise-adding modification
- Need to re-implement the noise-adding. Make it before the fbank computation.
Tencent exps
N/A
LM development
NN LM=
- Results show better performance with NN rescoring.
2044 map notetp3 record1900 general online1 online2 speedup scal= 0.5 28.69 34.52 20.56 14.53 45.52 41.3 34.48 33.53 scal = 0.6 28.3 34.28 20.67 14.05 45.34 40.73 33.81 32.71 scal = 0.7 27.84 33.81 20.18 13.74 45.13 40.29 33.17 31.86 scal = 0.8 27.58 33.87 19.16 13.53 44.92 40 32.82 31.74 scal = 0.9 27.86 33.92 19.05 13.41 44.9 39.65 32.5 31.89 scal = 0.95 27.79 34.07 19.05 13.56 44.83 39.76 32.41 31.68 scal = 0.96 27.9 34.1 18.83 13.53 44.83 39.79 32.43 31.68 scal = 0.97 27.94 34.15 18.83 13.47 44.82 39.78 32.44 31.89 scal = 0.99 28.02 34.2 19 13.49 44.86 39.82 32.47 32.01
QA LM
The QA model training done. Test on the Sogou Q text.
! Data ! lexicon ! size ! size2 ! PPL ! PPL2 | Q (10G)|15w |1.5G |800M| 301.64 | 317.19 |
---|---|
QA(100G):11w |4.5G |1G | 287.134 | 315.695 | |
QA(100G):8w8 |4.5G |1G | 559.029 | 626.146 |