“2013-04-19”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
第65行: 第65行:
 
dnn-2: 34%  9  frame window,  state-based tree
 
dnn-2: 34%  9  frame window,  state-based tree
  
  (3) GPU & CPU merge. Invesigate the possibility to merge GPU and  
+
  (3) GPU & CPU merge. Invesigate the possibility to merge GPU and CPU code. Try to find out an easier way. (1 week)
CPU code. Try to find out an easier way. (1 week)
+
  
 
  (4) L-1 sparse initial training.  
 
  (4) L-1 sparse initial training.  
第77行: 第76行:
 
4. Embedded progress
 
4. Embedded progress
  
(1). Some large performance (speed) degradation with the embedded platform(1/60).
+
(1). Some large performance (speed) degradation with the embedded platform(1/60).
  
(2). Planning for sparse DNN.
+
(2). Planning for sparse DNN.
  
(3). QA LM training, still failed. Mengyuan need more work on this.
+
(3). QA LM training, still failed. Mengyuan need more work on this.

2013年4月25日 (四) 03:51的版本

1. Data sharing

(1) AM/lexicon/LM are shared.
(2) LM count files are still in transfering. 

2. DNN progress

(1) 400 hour BN model. 

#Tencent baseline:
700 hour online data + 700 863 data , HLDA+MPE; 88k lexicon:

record1900: 8.4
2044:       22.4
online 1:   35.6
online 2:   29.6
map:        24.5
notepad:    16
general:    36
speedup:    26.8

#bMMI
exp/tri4b_mmi_b0.1/decode_tlm_biglm:
map: %WER 27.54 [ 4029 / 14628, 63 ins, 533 del, 3433 sub ]
2044: %WER 24.44 [ 5681 / 23241, 313 ins, 844 del, 4524 sub ]
notetp3: %WER 19.81 [ 367 / 1853, 8 ins, 48 del, 311 sub ]
record1900: %WER 7.65 [ 909 / 11888, 17 ins, 377 del, 515 sub ]
general: %WER 38.52 [ 14490 / 37619, 182 ins, 1314 del, 12994 sub ]
online1: %WER 34.66 [ 9855 / 28433, 398 ins, 1895 del, 7562 sub ]
online2: %WER 27.23 [ 16092 / 59101, 623 ins, 2954 del, 12515 sub ]
speedup: %WER 27.88 [ 1465 / 5255, 32 ins, 332 del, 1101 sub ]

#fMMI
exp/tri4b_fmmi_indirect/decode_tlm_it7_biglm:
map: %WER 27.69 [ 4050 / 14628, 61 ins, 538 del, 3451 sub ]
2044: %WER 24.03 [ 5584 / 23241, 316 ins, 817 del, 4451 sub ]
notetp3: %WER 21.75 [ 403 / 1853, 7 ins, 53 del, 343 sub ]
record1900: %WER 7.35 [ 874 / 11888, 31 ins, 347 del, 496 sub ]
general: %WER 38.90 [ 14635 / 37619, 206 ins, 1331 del, 13098 sub ]
online1: %WER 34.33 [ 9762 / 28433, 424 ins, 1888 del, 7450 sub ]
online2: %WER 26.80 [ 15837 / 59101, 648 ins, 2902 del, 12287 sub ]
speedup: %WER 26.81 [ 1409 / 5255, 35 ins, 284 del, 1090 sub ]

#DNN-bn
exp/tri4d_fmmi_indirect/decode_tlm_it4_biglm:
map: %WER 23.79 [ 3480 / 14628, 58 ins, 465 del, 2957 sub ]
2044: %WER 21.77 [ 5060 / 23241, 297 ins, 711 del, 4052 sub ]
notetp3: %WER 15.81 [ 293 / 1853, 8 ins, 35 del, 250 sub ]
record1900: %WER 6.57 [ 781 / 11888, 18 ins, 325 del, 438 sub ]
general: %WER 33.61 [ 12645 / 37619, 191 ins, 968 del, 11486 sub ]
online1: %WER 31.44 [ 8940 / 28433, 311 ins, 1619 del, 7010 sub ]
online2: %WER 24.10 [ 14245 / 59101, 523 ins, 2417 del, 11305 sub ]
speedup: %WER 22.82 [ 1199 / 5255, 39 ins, 241 del, 919 sub ]
(2) Tencent test result: 70h training data(2 day, 15 machines, 10 threads), 

88k LM, general test case:

gmmi-bmmi: 38.7%

dnn-1: 28% 11 frame window, phone-based tree

dnn-2: 34% 9 frame window, state-based tree

(3) GPU & CPU merge. Invesigate the possibility to merge GPU and CPU code. Try to find out an easier way. (1 week)
(4) L-1 sparse initial training. 

3.Kaldi/HTK merge

(1) HTK2Kaldi: the tool with Kaldi does not work.
(2) Kaldi2HTK: done with implementation. Testing?

4. Embedded progress

(1). Some large performance (speed) degradation with the embedded platform(1/60).
(2). Planning for sparse DNN.
(3). QA LM training, still failed. Mengyuan need more work on this.