“第四十七章 预测新冠病毒传染性”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
开发者资源
高级读者
 
第35行: 第35行:
 
==高级读者==
 
==高级读者==
  
* Jake Epstein , A CDC graph shows just how different the Omicron wave is compared to previous COVID-19 surges [https://www.businessinsider.com/cdc-graph-shows-difference-between-omicron-variant-previous-coronavirus-surges-2022-1]
+
* Jake Epstein , A CDC graph shows just how different the Omicron wave is compared to previous COVID-19 surges [*][https://www.businessinsider.com/cdc-graph-shows-difference-between-omicron-variant-previous-coronavirus-surges-2022-1]
 
* Obermeyer F, Jankowiak M, Barkas N, et al. Analysis of 6.4 million SARS-CoV-2 genomes identifies mutations associated with fitness[J]. Science, 2022, 376(6599): 1327-1332. [https://www.science.org/doi/epdf/10.1126/science.abm1208]
 
* Obermeyer F, Jankowiak M, Barkas N, et al. Analysis of 6.4 million SARS-CoV-2 genomes identifies mutations associated with fitness[J]. Science, 2022, 376(6599): 1327-1332. [https://www.science.org/doi/epdf/10.1126/science.abm1208]
 
* Vaishya R, Javaid M, Khan I H, et al. Artificial Intelligence (AI) applications for COVID-19 pandemic[J]. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2020, 14(4): 337-339. [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7195043/]
 
* Vaishya R, Javaid M, Khan I H, et al. Artificial Intelligence (AI) applications for COVID-19 pandemic[J]. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2020, 14(4): 337-339. [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7195043/]
 
* Zhou Y, Wang F, Tang J, et al. Artificial intelligence in COVID-19 drug repurposing[J]. The Lancet Digital Health, 2020, 2(12): e667-e676. [https://www.sciencedirect.com/science/article/pii/S2589750020301928]
 
* Zhou Y, Wang F, Tang J, et al. Artificial intelligence in COVID-19 drug repurposing[J]. The Lancet Digital Health, 2020, 2(12): e667-e676. [https://www.sciencedirect.com/science/article/pii/S2589750020301928]
 
* Naudé W. Artificial intelligence vs COVID-19: limitations, constraints and pitfalls[J]. AI & society, 2020, 35(3): 761-765. [https://link.springer.com/article/10.1007/s00146-020-00978-0]
 
* Naudé W. Artificial intelligence vs COVID-19: limitations, constraints and pitfalls[J]. AI & society, 2020, 35(3): 761-765. [https://link.springer.com/article/10.1007/s00146-020-00978-0]

2023年8月13日 (日) 02:46的最后版本

教学资料

  • 教学参考
  • 课件
  • 小清爱提问:人工智能如何预测新冠病毒传染性 ? [1]
  • 小清爱提问:人工智能如何预测新冠疫情? [2]


扩展阅读

  • AI100问:人工智能如何预测新冠病毒传染性 ? [3]
  • AI100问:人工智能如何预测新冠疫情 [4]
  • 维基百科:2019 新型冠状病毒[5]
  • 全球新冠疫情数据 [6]
  • 新冠疫情:人工智能算法能“听咳嗽声音辨识新冠病毒”[7]
  • 2021年人工智能将在抗疫中再显身手 [8]
  • 人工智能技术在疫情中的五大应用 [9]

视频展示


演示链接

开发者资源

  • Pango 命名法 [11]
  • GISAID dataset [12]
  • 新冠病毒传染性预测程序源码 [*][13]

高级读者

  • Jake Epstein , A CDC graph shows just how different the Omicron wave is compared to previous COVID-19 surges [*][14]
  • Obermeyer F, Jankowiak M, Barkas N, et al. Analysis of 6.4 million SARS-CoV-2 genomes identifies mutations associated with fitness[J]. Science, 2022, 376(6599): 1327-1332. [15]
  • Vaishya R, Javaid M, Khan I H, et al. Artificial Intelligence (AI) applications for COVID-19 pandemic[J]. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2020, 14(4): 337-339. [16]
  • Zhou Y, Wang F, Tang J, et al. Artificial intelligence in COVID-19 drug repurposing[J]. The Lancet Digital Health, 2020, 2(12): e667-e676. [17]
  • Naudé W. Artificial intelligence vs COVID-19: limitations, constraints and pitfalls[J]. AI & society, 2020, 35(3): 761-765. [18]