“第四十七章 预测新冠病毒传染性”版本间的差异
来自cslt Wiki
(→扩展阅读) |
(→开发者资源) |
||
第31行: | 第31行: | ||
* Pango 命名法 [https://cov-lineages.org/index.html] | * Pango 命名法 [https://cov-lineages.org/index.html] | ||
* GISAID dataset [https://gisaid.org/about-us/mission/] | * GISAID dataset [https://gisaid.org/about-us/mission/] | ||
− | * 新冠病毒传染性预测程序源码 [https://github.com/broadinstitute/pyro-cov] | + | * 新冠病毒传染性预测程序源码 [*][https://github.com/broadinstitute/pyro-cov] |
− | + | ||
==高级读者== | ==高级读者== |
2023年8月13日 (日) 02:46的版本
教学资料
扩展阅读
- AI100问:人工智能如何预测新冠病毒传染性 ? [3]
- AI100问:人工智能如何预测新冠疫情 [4]
- 维基百科:2019 新型冠状病毒[5]
- 全球新冠疫情数据 [6]
- 新冠疫情:人工智能算法能“听咳嗽声音辨识新冠病毒”[7]
- 2021年人工智能将在抗疫中再显身手 [8]
- 人工智能技术在疫情中的五大应用 [9]
视频展示
演示链接
开发者资源
高级读者
- Jake Epstein , A CDC graph shows just how different the Omicron wave is compared to previous COVID-19 surges [14]
- Obermeyer F, Jankowiak M, Barkas N, et al. Analysis of 6.4 million SARS-CoV-2 genomes identifies mutations associated with fitness[J]. Science, 2022, 376(6599): 1327-1332. [15]
- Vaishya R, Javaid M, Khan I H, et al. Artificial Intelligence (AI) applications for COVID-19 pandemic[J]. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2020, 14(4): 337-339. [16]
- Zhou Y, Wang F, Tang J, et al. Artificial intelligence in COVID-19 drug repurposing[J]. The Lancet Digital Health, 2020, 2(12): e667-e676. [17]
- Naudé W. Artificial intelligence vs COVID-19: limitations, constraints and pitfalls[J]. AI & society, 2020, 35(3): 761-765. [18]