“第四十七章 预测新冠病毒传染性”版本间的差异
来自cslt Wiki
第9行: | 第9行: | ||
* AI100问:人工智能如何预测新冠病毒传染性 ? [http://aigraph.cslt.org/courses/45/AI-100-113-人工智能预测新冠病毒传染性.pdf] | * AI100问:人工智能如何预测新冠病毒传染性 ? [http://aigraph.cslt.org/courses/45/AI-100-113-人工智能预测新冠病毒传染性.pdf] | ||
− | * AI100问:人工智能如何预测新冠疫情 [http://aigraph.cslt.org/courses/ | + | * AI100问:人工智能如何预测新冠疫情 [http://aigraph.cslt.org/courses/47/AI-100-24-人工智能如何预测新冠疫情.pdf] |
− | + | * 全球新冠疫情数据 [https://ourworldindata.org/explorers/coronavirus-data-explorer] | |
+ | * 新冠疫情:人工智能算法能“听咳嗽声音辨识新冠病毒”[http://aigraph.cslt.org/courses/47/BBC_人工智能算法能听咳嗽声音辨识新冠病毒.pdf] | ||
==视频展示== | ==视频展示== | ||
+ | * AI for COVID-19 [http://aigraph.cslt.org/courses/47/AI-for-COVID.mp4] | ||
+ | * MIT: detecting COVID by cough [http://aigraph.cslt.org/courses/47/AUDIO_ COVID.mp4] | ||
第22行: | 第25行: | ||
==开发者资源== | ==开发者资源== | ||
+ | * Pango 命名法 [https://cov-lineages.org/index.html] | ||
+ | * GISAID dataset [https://gisaid.org/about-us/mission/] | ||
* 新冠病毒传染性预测程序源码 [https://github.com/broadinstitute/pyro-cov] | * 新冠病毒传染性预测程序源码 [https://github.com/broadinstitute/pyro-cov] | ||
==高级读者== | ==高级读者== | ||
− | |||
* Jake Epstein , A CDC graph shows just how different the Omicron wave is compared to previous COVID-19 surges [https://www.businessinsider.com/cdc-graph-shows-difference-between-omicron-variant-previous-coronavirus-surges-2022-1] | * Jake Epstein , A CDC graph shows just how different the Omicron wave is compared to previous COVID-19 surges [https://www.businessinsider.com/cdc-graph-shows-difference-between-omicron-variant-previous-coronavirus-surges-2022-1] | ||
* Obermeyer F, Jankowiak M, Barkas N, et al. Analysis of 6.4 million SARS-CoV-2 genomes identifies mutations associated with fitness[J]. Science, 2022, 376(6599): 1327-1332. [https://www.science.org/doi/epdf/10.1126/science.abm1208] | * Obermeyer F, Jankowiak M, Barkas N, et al. Analysis of 6.4 million SARS-CoV-2 genomes identifies mutations associated with fitness[J]. Science, 2022, 376(6599): 1327-1332. [https://www.science.org/doi/epdf/10.1126/science.abm1208] | ||
+ | * Vaishya R, Javaid M, Khan I H, et al. Artificial Intelligence (AI) applications for COVID-19 pandemic[J]. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2020, 14(4): 337-339. [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7195043/] | ||
+ | * Zhou Y, Wang F, Tang J, et al. Artificial intelligence in COVID-19 drug repurposing[J]. The Lancet Digital Health, 2020, 2(12): e667-e676. [https://www.sciencedirect.com/science/article/pii/S2589750020301928] | ||
+ | * Naudé W. Artificial intelligence vs COVID-19: limitations, constraints and pitfalls[J]. AI & society, 2020, 35(3): 761-765. [https://link.springer.com/article/10.1007/s00146-020-00978-0] |
2022年8月24日 (三) 14:49的版本
教学资料
扩展阅读
视频展示
演示链接
开发者资源
高级读者
- Jake Epstein , A CDC graph shows just how different the Omicron wave is compared to previous COVID-19 surges [10]
- Obermeyer F, Jankowiak M, Barkas N, et al. Analysis of 6.4 million SARS-CoV-2 genomes identifies mutations associated with fitness[J]. Science, 2022, 376(6599): 1327-1332. [11]
- Vaishya R, Javaid M, Khan I H, et al. Artificial Intelligence (AI) applications for COVID-19 pandemic[J]. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2020, 14(4): 337-339. [12]
- Zhou Y, Wang F, Tang J, et al. Artificial intelligence in COVID-19 drug repurposing[J]. The Lancet Digital Health, 2020, 2(12): e667-e676. [13]
- Naudé W. Artificial intelligence vs COVID-19: limitations, constraints and pitfalls[J]. AI & society, 2020, 35(3): 761-765. [14]