“第十二章 机器学习基本流程”版本间的差异
来自cslt Wiki
(→演示链接) |
|||
第15行: | 第15行: | ||
* 百度百科:梯度下降法[https://baike.baidu.com/item/%E6%A2%AF%E5%BA%A6%E4%B8%8B%E9%99%8D/4864937][http://baike.baidu.com/l/FdY9mFXE] | * 百度百科:梯度下降法[https://baike.baidu.com/item/%E6%A2%AF%E5%BA%A6%E4%B8%8B%E9%99%8D/4864937][http://baike.baidu.com/l/FdY9mFXE] | ||
* 知乎:梯度下降法[https://zhuanlan.zhihu.com/p/36902908] | * 知乎:梯度下降法[https://zhuanlan.zhihu.com/p/36902908] | ||
+ | * 知乎:小批量梯度下降法[https://zhuanlan.zhihu.com/p/72929546] | ||
+ | * 知乎:动量梯度下降法[https://www.jiqizhixin.com/graph/technologies/d6ee5e5b-43ff-4c41-87ff-f34c234d0e32][] | ||
* 维基百科:模拟退火算法 [http://aigraph.cslt.org/courses/12/模拟退.pdf火][http://aigraph.cslt.org/courses/12/Simulated_annealing.pdf] | * 维基百科:模拟退火算法 [http://aigraph.cslt.org/courses/12/模拟退.pdf火][http://aigraph.cslt.org/courses/12/Simulated_annealing.pdf] | ||
* 百度百科:模拟退火算法[https://baike.baidu.com/item/%E6%A8%A1%E6%8B%9F%E9%80%80%E7%81%AB%E7%AE%97%E6%B3%95/355508][http://baike.baidu.com/l/Smyp3NfN] | * 百度百科:模拟退火算法[https://baike.baidu.com/item/%E6%A8%A1%E6%8B%9F%E9%80%80%E7%81%AB%E7%AE%97%E6%B3%95/355508][http://baike.baidu.com/l/Smyp3NfN] | ||
第22行: | 第24行: | ||
* 百度百科:奥卡姆剃刀[https://baike.baidu.com/item/%E5%A5%A5%E5%8D%A1%E5%A7%86%E5%89%83%E5%88%80%E5%8E%9F%E7%90%86/10900565][http://baike.baidu.com/l/HUkXrXzT] | * 百度百科:奥卡姆剃刀[https://baike.baidu.com/item/%E5%A5%A5%E5%8D%A1%E5%A7%86%E5%89%83%E5%88%80%E5%8E%9F%E7%90%86/10900565][http://baike.baidu.com/l/HUkXrXzT] | ||
* 维基百科:过拟合[http://aigraph.cslt.org/courses/12/Overfitting.pdf][http://aigraph.cslt.org/courses/12/過適.pdf] | * 维基百科:过拟合[http://aigraph.cslt.org/courses/12/Overfitting.pdf][http://aigraph.cslt.org/courses/12/過適.pdf] | ||
+ | * 机器之心:数据增强 [https://www.jiqizhixin.com/articles/2019-12-04-10] | ||
+ | * 知乎:数据增强 [https://zhuanlan.zhihu.com/p/38345420][https://zhuanlan.zhihu.com/p/41679153] | ||
+ | * 什么是模型预训练[https://paddlepedia.readthedocs.io/en/latest/tutorials/pretrain_model/pretrain_model_description.html] | ||
+ | * 迁移学习 [https://baike.baidu.com/item/%E8%BF%81%E7%A7%BB%E5%AD%A6%E4%B9%A0/22768151] | ||
==演示链接== | ==演示链接== | ||
第37行: | 第43行: | ||
* 王东,机器学习导论,第一章“绪论”,第十一章“优化方法”[http://mlbook.cslt.org] | * 王东,机器学习导论,第一章“绪论”,第十一章“优化方法”[http://mlbook.cslt.org] | ||
* Wolpert, David (1996), "The Lack of A Priori Distinctions between Learning Algorithms", Neural Computation, pp. 1341–1390 [https://web.archive.org/web/20161220125415/http://www.zabaras.com/Courses/BayesianComputing/Papers/lack_of_a_priori_distinctions_wolpert.pdf] | * Wolpert, David (1996), "The Lack of A Priori Distinctions between Learning Algorithms", Neural Computation, pp. 1341–1390 [https://web.archive.org/web/20161220125415/http://www.zabaras.com/Courses/BayesianComputing/Papers/lack_of_a_priori_distinctions_wolpert.pdf] | ||
+ | * Sebastian Ruder, An overview of gradient descend algorithms,2017 [https://arxiv.org/pdf/1609.04747.pdf] | ||
+ | * Kirkpatrick, S.; Gelatt Jr, C. D.; Vecchi, M. P. (1983). "Optimization by Simulated Annealing". Science. 220 (4598): 671–680. [https://sci2s.ugr.es/sites/default/files/files/Teaching/GraduatesCourses/Metaheuristicas/Bibliography/1983-Science-Kirkpatrick-sim_anneal.pdf] |
2022年8月3日 (三) 00:42的版本
教学资料
扩展阅读
- 维基百科:没有免费的午餐定理 [5]
- 维基百科:梯度下降法[6][7]
- 百度百科:梯度下降法[8][9]
- 知乎:梯度下降法[10]
- 知乎:小批量梯度下降法[11]
- 知乎:动量梯度下降法[12][]
- 维基百科:模拟退火算法 [13][14]
- 百度百科:模拟退火算法[15][16]
- 知乎:模拟退火详解 [17]
- 维基百科:牛顿法 [18][19]
- 维基百科:奥卡姆剃刀[20][21]
- 百度百科:奥卡姆剃刀[22][23]
- 维基百科:过拟合[24][25]
- 机器之心:数据增强 [26]
- 知乎:数据增强 [27][28]
- 什么是模型预训练[29]
- 迁移学习 [30]
演示链接
开发者资源
高级读者
- 王东,机器学习导论,第一章“绪论”,第十一章“优化方法”[33]
- Wolpert, David (1996), "The Lack of A Priori Distinctions between Learning Algorithms", Neural Computation, pp. 1341–1390 [34]
- Sebastian Ruder, An overview of gradient descend algorithms,2017 [35]
- Kirkpatrick, S.; Gelatt Jr, C. D.; Vecchi, M. P. (1983). "Optimization by Simulated Annealing". Science. 220 (4598): 671–680. [36]