“Reading Task”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
第6行: 第6行:
 
|align="center"| ICML 2015 ||align="center"| From Word Embeddings To Document Distances ||align="center" | - ||align="center" | -  
 
|align="center"| ICML 2015 ||align="center"| From Word Embeddings To Document Distances ||align="center" | - ||align="center" | -  
 
|-
 
|-
| ICML 2015 || Weight Uncertainty in Neural Network || - || - |
+
|align="center"| ICML 2015 ||align="center"| Weight Uncertainty in Neural Network ||align="center"| - ||align="center"| -
 
|-
 
|-
| ICML 2015 ||  
+
|align="center"| ICML 2015 ||align="center"| Long Short-Term Memory Over Recursive Structures ||align="center"| - ||align="center"| -
 +
|-
 +
|align="center"| ICML 2015 ||align="center"| Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift ||align="center"| - ||align="center"| -
 +
|-
 +
|align="center"| ICML 2015 ||align="center"| Learning Transferable Features with Deep Adaptation Networks ||align="center"| - ||align="center"| -
 +
|-
 +
|align="center"| ICML 2015 ||align="center"| Learning Word Representations with Hierarchical Sparse Coding ||align="center"| - ||align="center"| -
 +
|-
 +
|align="center"| ICML 2015 ||align="center"| DRAW: A Recurrent Neural Network For Image Generation ||align="center"| - ||align="center"| -
 +
|-
 +
|align="center"| ICML 2015 ||align="center"| Unsupervised Learning of Video Representations using LSTMs ||align="center"| - ||align="center"| -
 +
|-
 +
|align="center"| ICML 2015 ||align="center"| MADE: Masked Autoencoder for Distribution Estimation ||align="center"| - ||align="center"| -
 +
|-
 +
|align="center"| ICML 2015 ||align="center"| Hashing for Distributed Data ||align="center"| - ||align="center"| -
 +
|-
 +
|align="center"| ICML 2015 ||align="center"| Is Feature Selection Secure against Training Data Poisoning? ||align="center"| - ||align="center"| -
 +
|-
 +
|align="center"| ICML 2015 ||align="center"| Mind the duality gap: safer rules for the Lasso ||align="center"| - ||align="center"| -
 +
|-
 +
|align="center"| ICML 2015 ||align="center"| PeakSeg: constrained optimal segmentation and supervised penalty learning for peak detection in count data ||align="center"| - ||align="center"| -
 +
|-
 +
|align="center"| ICML 2015 ||align="center"| Generalization error bounds for learning to rank: Does the length of document lists matter? ||align="center"| - ||align="center"| -
 +
|-
 +
|align="center"| ICML 2015 ||align="center"| Classification with Low Rank and Missing Data ||align="center"| - ||align="center"| -
 +
|-
 +
|align="center"| ICML 2015 ||align="center"| Functional Subspace Clustering with Application to Time Series ||align="center"| - ||align="center"| -
 +
|-
 +
|align="center"| ICML 2015 ||align="center"| Abstraction Selection in Model-based Reinforcement Learning ||align="center"| - ||align="center"| -
 +
|-
 +
|align="center"| ICML 2015 ||align="center"| Learning Local Invariant Mahalanobis Distances ||align="center"| - ||align="center"| -
 +
|-
 +
|align="center"| ICML 2015 ||align="center"| A Stochastic PCA and SVD Algorithm with an Exponential Convergence Rate ||align="center"| - ||align="center"| -
 
|-
 
|-
 
|}
 
|}

2015年7月24日 (五) 02:39的版本

Affiliation Paper Name Principal Materials
ICML 2015 From Word Embeddings To Document Distances - -
ICML 2015 Weight Uncertainty in Neural Network - -
ICML 2015 Long Short-Term Memory Over Recursive Structures - -
ICML 2015 Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift - -
ICML 2015 Learning Transferable Features with Deep Adaptation Networks - -
ICML 2015 Learning Word Representations with Hierarchical Sparse Coding - -
ICML 2015 DRAW: A Recurrent Neural Network For Image Generation - -
ICML 2015 Unsupervised Learning of Video Representations using LSTMs - -
ICML 2015 MADE: Masked Autoencoder for Distribution Estimation - -
ICML 2015 Hashing for Distributed Data - -
ICML 2015 Is Feature Selection Secure against Training Data Poisoning? - -
ICML 2015 Mind the duality gap: safer rules for the Lasso - -
ICML 2015 PeakSeg: constrained optimal segmentation and supervised penalty learning for peak detection in count data - -
ICML 2015 Generalization error bounds for learning to rank: Does the length of document lists matter? - -
ICML 2015 Classification with Low Rank and Missing Data - -
ICML 2015 Functional Subspace Clustering with Application to Time Series - -
ICML 2015 Abstraction Selection in Model-based Reinforcement Learning - -
ICML 2015 Learning Local Invariant Mahalanobis Distances - -
ICML 2015 A Stochastic PCA and SVD Algorithm with an Exponential Convergence Rate - -