“Reading table”版本间的差异
来自cslt Wiki
第12行: | 第12行: | ||
|- | |- | ||
− | + | |2015/07/10 ||-|| Context-Dependent Translation Selection Using Convolutional Neural Network [http://arxiv.org/abs/1503.02357] | |
|Syntax-based Deep Matching of Short Texts [http://arxiv.org/abs/1503.02427] | |Syntax-based Deep Matching of Short Texts [http://arxiv.org/abs/1503.02427] | ||
Convolutional Neural Network Architectures for Matching Natural Language Sentences[http://www.hangli-hl.com/uploads/3/1/6/8/3168008/hu-etal-nips2014.pdf] | Convolutional Neural Network Architectures for Matching Natural Language Sentences[http://www.hangli-hl.com/uploads/3/1/6/8/3168008/hu-etal-nips2014.pdf] |
2015年7月10日 (五) 06:43的版本
Date | Speaker | Materials | |
---|---|---|---|
2014/10/22 | Zhang Dong Xu | Why RNN? PPT paper 1,paper 2 | |
2014/12/8 | Liu Rong | Yu Zhao, Zhiyuan Liu, Maosong Sun. Phrase Type Sensitive Tensor Indexing Model for Semantic Composition. AAAI'15. pdf | |
Yang Liu, Zhiyuan Liu, Tat-Seng Chua, Maosong Sun. Topical Word Embeddings. AAAI'15. pdfcode | |||
Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, Xuan Zhu. Learning Entity and Relation Embeddings for Knowledge Graph Completion. AAAI'15. pdfcode | |||
2015/07/10 | - | Context-Dependent Translation Selection Using Convolutional Neural Network [1] | Syntax-based Deep Matching of Short Texts [2]
Convolutional Neural Network Architectures for Matching Natural Language Sentences[3] LSTM: A Search Space Odyssey [4] A Deep Embedding Model for Co-occurrence Learning [5] Text segmentation based on semantic word embeddings[6] semantic parsing via paraphrashings[7] |