“Text-2015-01-14”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
list paper
Lr讨论 | 贡献
share paper
第1行: 第1行:
==share paper==
+
==ready to share paper==
 +
* E. Strubell,L. Vilnis,and A.McCallum "Training for fast sequential prediction using dynamic feature selection"[http://arxiv.org/pdf/1410.8498v2.pdf](Dong Wang)
 +
* "Predictive Property of Hidden Representations in Recurrent Neural Network Language Models."(Xiaoxi Wang)
 +
* "embedding word tokens using a linear dynamical system"[http://people.cs.umass.edu/~belanger/belanger_lds.pdf](Bin Yuan)
 +
 
 
==choose paper==
 
==choose paper==
 
==list paper==
 
==list paper==

2015年1月12日 (一) 06:34的版本

ready to share paper

  • E. Strubell,L. Vilnis,and A.McCallum "Training for fast sequential prediction using dynamic feature selection"[1](Dong Wang)
  • "Predictive Property of Hidden Representations in Recurrent Neural Network Language Models."(Xiaoxi Wang)
  • "embedding word tokens using a linear dynamical system"[2](Bin Yuan)

choose paper

list paper

Deep Learning and Representation Learning Workshop: NIPS 2014 Accepted papers Oral presentations:

cuDNN: Efficient Primitives for Deep Learning (#49) Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catanzaro, Evan Shelhamer

Distilling the Knowledge in a Neural Network (#65) Geoffrey Hinton, Oriol Vinyals, Jeff Dean

Supervised Learning in Dynamic Bayesian Networks (#54) Shamim Nemati, Ryan Adams

Deeply-Supervised Nets (#2) Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, Zhuowen Tu


Posters, morning session (11:30-14:45):

Unsupervised Feature Learning from Temporal Data (#3) Ross Goroshin, Joan Bruna, Arthur Szlam, Jonathan Tompson, David Eigen, Yann LeCun

Autoencoder Trees (#5) Ozan Irsoy, Ethem Alpaydin

Scheduled denoising autoencoders (#6) Krzysztof Geras, Charles Sutton

Learning to Deblur (#8) Christian Schuler, Michael Hirsch, Stefan Harmeling, Bernhard Schölkopf

A Winner-Take-All Method for Training Sparse Convolutional Autoencoders (#10) Alireza Makhzani, Brendan Frey

"Mental Rotation" by Optimizing Transforming Distance (#11) Weiguang Ding, Graham Taylor

On Importance of Base Model Covariance for Annealing Gaussian RBMs (#12) Taichi Kiwaki, Kazuyuki Aihara

Ultrasound Standard Plane Localization via Spatio-Temporal Feature Learning with Knowledge Transfer (#14) Hao Chen, Dong Ni, Ling Wu, Sheng Li, Pheng Heng

Understanding Locally Competitive Networks (#15) Rupesh Srivastava, Jonathan Masci, Faustino Gomez, Jurgen Schmidhuber

Unsupervised pre-training speeds up the search for good features: an analysis of a simplified model of neural network learning (#18) Avraham Ruderman

Analyzing Feature Extraction by Contrastive Divergence Learning in RBMs (#19) Ryo Karakida, Masato Okada, Shun-ichi Amari

Deep Tempering (#20) Guillaume Desjardins, Heng Luo, Aaron Courville, Yoshua Bengio

Learning Word Representations with Hierarchical Sparse Coding (#21) Dani Yogatama, Manaal Faruqui, Chris Dyer, Noah Smith

Deep Learning as an Opportunity in Virtual Screening (#23) Thomas Unterthiner, Andreas Mayr, Günter Klambauer, Marvin Steijaert, Jörg Wenger, Hugo Ceulemans, Sepp Hochreiter

Revisit Long Short-Term Memory: An Optimization Perspective (#24) Qi Lyu, J Zhu

Locally Scale-Invariant Convolutional Neural Networks (#26) Angjoo Kanazawa, David Jacobs, Abhishek Sharma

Deep Exponential Families (#28) Rajesh Ranganath, Linpeng Tang, Laurent Charlin, David Blei

Techniques for Learning Binary Stochastic Feedforward Neural Networks (#29) Tapani Raiko, mathias Berglund, Guillaume Alain, Laurent Dinh

Inside-Outside Semantics: A Framework for Neural Models of Semantic Composition (#30) Phong Le, Willem Zuidema

Deep Multi-Instance Transfer Learning (#32) Dimitrios Kotzias, Misha Denil, Phil Blunsom, Nando De Freitas

Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models (#33) Ryan Kiros, Ruslan Salakhutdinov, Richard Zemel

Retrofitting Word Vectors to Semantic Lexicons (#34) Manaal Faruqui, Jesse Dodge, Sujay Jauhar, Chris Dyer, Eduard Hovy, Noah Smith

Deep Sequential Neural Network (#35) Ludovic Denoyer, Patrick Gallinari

Efficient Training Strategies for Deep Neural Network Language Models (#71) Holger Schwenk



Posters, afternoon session (17:00-18:30):

Deep Learning for Answer Sentence Selection (#36) Lei Yu, Karl Moritz Hermann, Phil Blunsom, Stephen Pulman

Synthetic Data and Artificial Neural Networks for Natural Scene Text Recognition (#37) Max Jaderberg, Karen Simonyan, Andrea Vedaldi, Andrew Zisserman

Learning Torque-Driven Manipulation Primitives with a Multilayer Neural Network (#39) Sergey Levine, Pieter Abbeel

SimNets: A Generalization of Convolutional Networks (#41) Nadav Cohen, Amnon Shashua

Phonetics embedding learning with side information (#44) Gabriel Synnaeve, Thomas Schatz, Emmanuel Dupoux

End-to-end Continuous Speech Recognition using Attention-based Recurrent NN: First Results (#45) Jan Chorowski, Dzmitry Bahdanau, KyungHyun Cho, Yoshua Bengio

BILBOWA: Fast Bilingual Distributed Representations without Word Alignments (#46) Stephan Gouws, Yoshua Bengio, Greg Corrado

Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling (#47) Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, Yoshua Bengio

Reweighted Wake-Sleep (#48) Jorg Bornschein, Yoshua Bengio

Explain Images with Multimodal Recurrent Neural Networks (#51) Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Alan Yuille

Rectified Factor Networks and Dropout (#53) Djork-Arné Clevert, Thomas Unterthiner, Sepp Hochreiter

Towards Deep Neural Network Architectures Robust to Adversarials (#55) Shixiang Gu, Luca Rigazio

Making Dropout Invariant to Transformations of Activation Functions and Inputs (#56) Jimmy Ba, Hui Yuan Xiong, Brendan Frey

Aspect Specific Sentiment Analysis using Hierarchical Deep Learning (#58) Himabindu Lakkaraju, Richard Socher, Chris Manning

Deep Directed Generative Autoencoders (#59) Sherjil Ozair, Yoshua Bengio

Conditional Generative Adversarial Nets (#60) Mehdi Mirza, Simon Osindero

Analyzing the Dynamics of Gated Auto-encoders (#61) Daniel Im, Graham Taylor

Representation as a Service (#63) Ouais Alsharif, Joelle Pineau, philip bachman

Provable Methods for Training Neural Networks with Sparse Connectivity (#66) Hanie Sedghi, Anima Anandkumar

Trust Region Policy Optimization (#67) John D. Schulman, Philipp C. Moritz, Sergey Levine, Michael I. Jordan, Pieter Abbeel

Document Embedding with Paragraph Vectors (#68) Andrew Dai, Christopher Olah, Quoc Le, Greg Corrado

Backprop-Free Auto-Encoders (#69) Dong-Hyun Lee, Yoshua Bengio

Rate-Distortion Auto-Encoders (#73) Luis Sanchez Giraldo, Jose Principe 评论 Commenting disabled due to a network error. Please reload the page. You do not have permission to add comments. 登录|最近的网站活动|举报滥用行为|打印页面|由 Google 协作平台强力驱动