“2022-01-24”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
 
(12位用户的14个中间修订版本未显示)
第17行: 第17行:
 
|Yunqi Cai
 
|Yunqi Cai
 
||   
 
||   
*
+
*Investigate railway Bureau; the practical application scenario of intelligent inspection robot
 +
*Prepare a report for Gusu Lab
 
||
 
||
*  
+
* keep on intelligent sensor investigation
 
||
 
||
 
*   
 
*   
第28行: 第29行:
 
|Lantian Li
 
|Lantian Li
 
||  
 
||  
*  
+
* Push CNCSRC
 +
* Submit final papers
 +
* Prepare hard trials paper
 
||
 
||
*  
+
* Go on hard trials paper
 
||
 
||
 
*   
 
*   
第39行: 第42行:
 
|Ying Shi
 
|Ying Shi
 
||  
 
||  
*
+
* investige forward attention [http://192.168.0.51:5555/cgi-bin/cvss/cvss_request.pl?account=shiying&step=view_request&cvssid=829 here]
 
||
 
||
*
+
* continue on forward attention
 
||
 
||
 
*   
 
*   
第50行: 第53行:
 
|Haoran Sun
 
|Haoran Sun
 
||  
 
||  
*  
+
* some experiments on AutoVC [http://cslt.riit.tsinghua.edu.cn/mediawiki/images/1/1c/Autovc.pdf pdf]
 
||
 
||
*  
+
* more experiments for cycle loss
 
||
 
||
 
*   
 
*   
第61行: 第64行:
 
|Chen Chen
 
|Chen Chen
 
||  
 
||  
*
+
* Experiments on kmeans and use label for clustering
 +
* Experiments on # of phn kinds
 +
* [http://192.168.0.51:5555/cgi-bin/cvss/cvss_request.pl?account=cchen&step=view_request&cvssid=846 cvss]
 
||
 
||
*
+
* Check the experiment of label clustering
 
||
 
||
 
*   
 
*   
第72行: 第77行:
 
|Pengqi Li
 
|Pengqi Li
 
||   
 
||   
*  
+
* study representation learning(self-supervised learning)
 +
* Using mel-spectrum and standard softmax on small data, models are trained
 +
* Data preprocessing
 
||
 
||
*  
+
* Visualization on a small models(mel-spectrum & MFCC)
 +
* Implement RELAX
 
||
 
||
 
*   
 
*   
第83行: 第91行:
 
|Weida Liang
 
|Weida Liang
 
||   
 
||   
*
+
* Conduct wav2vec test
 +
* Adjust andRun wav2vec+decoder model(training 40k/50k)
 +
* Add experiment details to paper
 
||
 
||
*
+
* paper submission to Arxiv
 
||
 
||
 
*   
 
*   
第93行: 第103行:
 
|Zixi Yan
 
|Zixi Yan
 
||   
 
||   
*
+
* Training supervised speech recognition models using wav2vec features
 
||
 
||
*
+
* Experiments with more data sets
 
||
 
||
 
*   
 
*   
第103行: 第113行:
 
|Sirui Li
 
|Sirui Li
 
||   
 
||   
*
+
* Extract MFCC features for GAN
 +
* Learning Clustering Algorithms
 
||
 
||
*
+
* go on GAN experiment
 
||
 
||
 
*   
 
*   
第114行: 第125行:
 
|Haoyu Jiang
 
|Haoyu Jiang
 
||  
 
||  
*
+
* Complete data merge
 +
* Prepare group report
 
||
 
||
*
+
* Comparison of audio-video baseline
 
||
 
||
 
*   
 
*   
第125行: 第137行:
 
|Ruihai Hou
 
|Ruihai Hou
 
||  
 
||  
*  
+
* Preproess data for the training of UIS-RNN
 +
* Train the UIS-RNN model on small dataset
 
||
 
||
 
*  
 
*  
第135行: 第148行:
 
|Renmiao Chen
 
|Renmiao Chen
 
||  
 
||  
*
+
* Finish MI test.
 +
* Finish CKA test.
 
||
 
||
 
*
 
*

2022年1月24日 (一) 11:05的最后版本

People This Week Next Week Task Tracking (DeadLine)
Dong Wang
  • Reschedule the cycleFlow paper
  • Keep on investigation for multi-modality information fusion
  • Rewrite cycleFlow
Yunqi Cai
  • Investigate railway Bureau; the practical application scenario of intelligent inspection robot
  • Prepare a report for Gusu Lab
  • keep on intelligent sensor investigation
Lantian Li
  • Push CNCSRC
  • Submit final papers
  • Prepare hard trials paper
  • Go on hard trials paper
Ying Shi
  • investige forward attention here
  • continue on forward attention
Haoran Sun
  • some experiments on AutoVC pdf
  • more experiments for cycle loss
Chen Chen
  • Experiments on kmeans and use label for clustering
  • Experiments on # of phn kinds
  • cvss
  • Check the experiment of label clustering
Pengqi Li
  • study representation learning(self-supervised learning)
  • Using mel-spectrum and standard softmax on small data, models are trained
  • Data preprocessing
  • Visualization on a small models(mel-spectrum & MFCC)
  • Implement RELAX
Weida Liang
  • Conduct wav2vec test
  • Adjust andRun wav2vec+decoder model(training 40k/50k)
  • Add experiment details to paper
  • paper submission to Arxiv
Zixi Yan
  • Training supervised speech recognition models using wav2vec features
  • Experiments with more data sets
Sirui Li
  • Extract MFCC features for GAN
  • Learning Clustering Algorithms
  • go on GAN experiment
Haoyu Jiang
  • Complete data merge
  • Prepare group report
  • Comparison of audio-video baseline
Ruihai Hou
  • Preproess data for the training of UIS-RNN
  • Train the UIS-RNN model on small dataset
Renmiao Chen
  • Finish MI test.
  • Finish CKA test.