“Zhiyong Zhang”版本间的差异
来自cslt Wiki
(相同用户的一个中间修订版本未显示) | |||
第24行: | 第24行: | ||
=Reading Lists= | =Reading Lists= | ||
− | *[[Efficient_mini-batch_training_for_stochastic_optimization |苏圣 2015-10-29 Efficient_mini-batch_training_for_stochastic_optimization.pdf ]] | + | *[[媒体文件:Efficient_mini-batch_training_for_stochastic_optimization.pdf |苏圣 2015-10-29 Efficient_mini-batch_training_for_stochastic_optimization ]] |
+ | *[[媒体文件:2015_Fitnets-Hints for thin deep nets.pdf |张之勇 2015-10-29 2015_Fitnets-Hints for thin deep nets ]] | ||
*http://www.cs.cmu.edu/~muli/file/minibatch_sgd.pdf | *http://www.cs.cmu.edu/~muli/file/minibatch_sgd.pdf |
2015年10月29日 (四) 07:14的最后版本
目录
Papers To Read
- 1, Learned-Norm pooling for deep feedforward and recurrent neural networks
Task schedules
Summary
-------------------------------------------------------------------------------------------------------- Priority | Tasks name | Status | Notions -------------------------------------------------------------------------------------------------------- 1 | Bi-Softmax | ■■■□□□□□□□ | 1400h am training and problem fixing -------------------------------------------------------------------------------------------------------- 2 | RNN+DAE | □□□□□□□□□□ | --------------------------------------------------------------------------------------------------------
Speech Recognition
Multi-lingual Am training
Bi-Softmax
- Using two distinct softmax for English and Chinese data.
- Testing on 100h-Ch+100h-En, better performance observed.
- Now testing the source code on 1400h_8k data, but stange decoding results got.Need to further investigate.