“ASR:2015-03-23”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
(以“==Speech Processing == === AM development === ==== Environment ==== * grid-11 often shut down automatically, too slow computation speed. * GPU has being repired.--X...”为内容创建页面)
 
Zxw讨论 | 贡献
Speech Processing
 
(1位用户的2个中间修订版本未显示)
第8行: 第8行:
 
==== RNN AM====
 
==== RNN AM====
 
* details at http://liuc.cslt.org/pages/rnnam.html
 
* details at http://liuc.cslt.org/pages/rnnam.html
* tuning parameters on monophone NN
+
* tuning parameters on monophone NN  
 +
 
  
 
==== Mic-Array ====
 
==== Mic-Array ====
* reproduce environment for interspeech
+
* investigate alpha parameter in time domian and frquency domain
* investigate alpha parameter in Lasso
+
  
 
====Dropout & Maxout & rectifier ====
 
====Dropout & Maxout & rectifier ====
第46行: 第46行:
 
:* Ivector dimention is smaller, performance is better
 
:* Ivector dimention is smaller, performance is better
 
:* Augument to hidden layer is better than input layer
 
:* Augument to hidden layer is better than input layer
 
+
:* write paper for interspeech -- Xuewei
  
 
==Text Processing==
 
==Text Processing==
第54行: 第54行:
 
* LM2.X
 
* LM2.X
 
:* train a large lm using 25w-dict.(hanzhenglong/wxx)
 
:* train a large lm using 25w-dict.(hanzhenglong/wxx)
::* v2.0c filter the useless word.(next week)
+
::* v2.0c filter the useless Chinese word and add 500 English word. get a little promotion effect.
::* set the test set for new word (hold)
+
:* prepare the wiki data: entity list.
+
  
 
====tag LM====
 
====tag LM====
 
* Tag Lm(JT)
 
* Tag Lm(JT)
:* error check
+
:* get new script from mx and test 1 tag lm
 
* similar word extension in FST
 
* similar word extension in FST
:* repeat the experiment using same data
+
:* experiment done
 +
:* write the paper
  
 
====RNN LM====
 
====RNN LM====
第89行: 第88行:
 
:* use different test set.
 
:* use different test set.
 
===QA===
 
===QA===
====improve fuzzy match====
+
 
* add Synonyms similarity using MERT-4 method(hold)
+
 
===online learning===
 
===online learning===
 
* data is ready.prepare the ACL paper
 
* data is ready.prepare the ACL paper
第96行: 第94行:
 
====framework====
 
====framework====
 
* extract the module
 
* extract the module
:* extract the context module ,search module,entity recognize module and common module.
 
:* define the inference in different modules
 
 
* composite module
 
* composite module
 
+
* fix the bug
 
====leftover problem====
 
====leftover problem====
 
* new inter will install SEMPRE
 
* new inter will install SEMPRE

2015年3月26日 (四) 01:21的最后版本

Speech Processing

AM development

Environment

  • grid-11 often shut down automatically, too slow computation speed.
  • GPU has being repired.--Xuewei

RNN AM


Mic-Array

  • investigate alpha parameter in time domian and frquency domain

Dropout & Maxout & rectifier

  • HOLD
  • Need to solve the too small learning-rate problem
  • 20h small scale sparse dnn with rectifier. --Mengyuan
  • 20h small scale sparse dnn with Maxout/rectifier based on weight-magnitude-pruning. --Mengyuan Zhao

Convolutive network

  • HOLD
  • CNN + DNN feature fusion
  • reproduce experiments -- Yiye

RNN-DAE(Deep based Auto-Encode-RNN)

Speech rate training

Neural network visulization

Speaker ID

Ivector based ASR

Text Processing

LM development

Domain specific LM

  • LM2.X
  • train a large lm using 25w-dict.(hanzhenglong/wxx)
  • v2.0c filter the useless Chinese word and add 500 English word. get a little promotion effect.

tag LM

  • Tag Lm(JT)
  • get new script from mx and test 1 tag lm
  • similar word extension in FST
  • experiment done
  • write the paper

RNN LM

  • rnn
  • the input and output is word embedding and add some token information like NER..
  • map the word to character and train the lm.
  • lstm+rnn
  • check the lstm-rnnlm code about how to Initialize and update learning rate.(hold)

Word2Vector

W2V based doc classification

  • data prepare.(hold)

Knowledge vector

  • make a report on Monday

Translation

  • v5.0 demo released
  • cut the dict and use new segment-tool

Sparse NN in NLP

  • prepare the ACL
  • check the code to find the problem .
  • increase the dimension
  • use different test set.

QA

online learning

  • data is ready.prepare the ACL paper
  • prepare sougouQ data and test it using current online learning method

framework

  • extract the module
  • composite module
  • fix the bug

leftover problem

  • new inter will install SEMPRE