“Text-2015-01-14”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
list paper
Lr讨论 | 贡献
list paper
 
(相同用户的一个中间修订版本未显示)
第1行: 第1行:
==share paper==
+
==ready to share paper==
 +
* E. Strubell,L. Vilnis,and A.McCallum "Training for fast sequential prediction using dynamic feature selection"[http://arxiv.org/pdf/1410.8498v2.pdf](Dong Wang)
 +
* "Predictive Property of Hidden Representations in Recurrent Neural Network Language Models."(Xiaoxi Wang)
 +
* "embedding word tokens using a linear dynamical system"[http://people.cs.umass.edu/~belanger/belanger_lds.pdf](Bin Yuan)
 +
 
 
==choose paper==
 
==choose paper==
==list paper==
+
=list paper=
Deep Learning and Representation Learning Workshop: NIPS 2014
+
==Deep Learning and Representation Learning Workshop: NIPS 2014 --Accepted papers==
Accepted papers
+
*Oral presentations:
Oral presentations:
+
  
cuDNN: Efficient Primitives for Deep Learning (#49)
+
cuDNN: Efficient Primitives for Deep Learning (#49)Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catanzaro, Evan Shelhamer
Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catanzaro, Evan Shelhamer
+
  
Distilling the Knowledge in a Neural Network (#65)
+
Distilling the Knowledge in a Neural Network (#65)Geoffrey Hinton, Oriol Vinyals, Jeff Dean
Geoffrey Hinton, Oriol Vinyals, Jeff Dean
+
  
Supervised Learning in Dynamic Bayesian Networks (#54)
+
Supervised Learning in Dynamic Bayesian Networks (#54)Shamim Nemati, Ryan Adams
Shamim Nemati, Ryan Adams
+
  
Deeply-Supervised Nets (#2)
+
Deeply-Supervised Nets (#2)Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, Zhuowen Tu
Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, Zhuowen Tu
+
  
  
  
Posters, morning session (11:30-14:45):
+
*Posters, morning session (11:30-14:45):
  
Unsupervised Feature Learning from Temporal Data (#3)
+
Unsupervised Feature Learning from Temporal Data (#3)Ross Goroshin, Joan Bruna, Arthur Szlam, Jonathan Tompson, David Eigen, Yann LeCun
Ross Goroshin, Joan Bruna, Arthur Szlam, Jonathan Tompson, David Eigen, Yann LeCun
+
  
Autoencoder Trees (#5)
+
Autoencoder Trees (#5)Ozan Irsoy, Ethem Alpaydin
Ozan Irsoy, Ethem Alpaydin
+
  
Scheduled denoising autoencoders (#6)
+
Scheduled denoising autoencoders (#6)Krzysztof Geras, Charles Sutton
Krzysztof Geras, Charles Sutton
+
  
Learning to Deblur (#8)
+
Learning to Deblur (#8)Christian Schuler, Michael Hirsch, Stefan Harmeling, Bernhard Schölkopf
Christian Schuler, Michael Hirsch, Stefan Harmeling, Bernhard Schölkopf
+
  
A Winner-Take-All Method for Training Sparse Convolutional Autoencoders (#10)
+
A Winner-Take-All Method for Training Sparse Convolutional Autoencoders (#10)Alireza Makhzani, Brendan Frey
Alireza Makhzani, Brendan Frey
+
  
"Mental Rotation" by Optimizing Transforming Distance (#11)
+
"Mental Rotation" by Optimizing Transforming Distance (#11)Weiguang Ding, Graham Taylor
Weiguang Ding, Graham Taylor
+
  
On Importance of Base Model Covariance for Annealing Gaussian RBMs (#12)
+
On Importance of Base Model Covariance for Annealing Gaussian RBMs (#12)Taichi Kiwaki, Kazuyuki Aihara
Taichi Kiwaki, Kazuyuki Aihara
+
  
Ultrasound Standard Plane Localization via Spatio-Temporal Feature Learning with Knowledge Transfer (#14)
+
Ultrasound Standard Plane Localization via Spatio-Temporal Feature Learning with Knowledge Transfer (#14)Hao Chen, Dong Ni, Ling Wu, Sheng Li, Pheng Heng
Hao Chen, Dong Ni, Ling Wu, Sheng Li, Pheng Heng
+
  
Understanding Locally Competitive Networks (#15)
+
Understanding Locally Competitive Networks (#15)Rupesh Srivastava, Jonathan Masci, Faustino Gomez, Jurgen Schmidhuber
Rupesh Srivastava, Jonathan Masci, Faustino Gomez, Jurgen Schmidhuber
+
  
Unsupervised pre-training speeds up the search for good features: an analysis of a simplified model of neural network learning (#18)
+
Unsupervised pre-training speeds up the search for good features: an analysis of a simplified model of neural network learning (#18)Avraham Ruderman
Avraham Ruderman
+
  
Analyzing Feature Extraction by Contrastive Divergence Learning in RBMs (#19)
+
Analyzing Feature Extraction by Contrastive Divergence Learning in RBMs (#19)Ryo Karakida, Masato Okada, Shun-ichi Amari
Ryo Karakida, Masato Okada, Shun-ichi Amari
+
  
Deep Tempering (#20)
+
Deep Tempering (#20)Guillaume Desjardins, Heng Luo, Aaron Courville, Yoshua Bengio
Guillaume Desjardins, Heng Luo, Aaron Courville, Yoshua Bengio
+
  
Learning Word Representations with Hierarchical Sparse Coding (#21)
+
Learning Word Representations with Hierarchical Sparse Coding (#21)Dani Yogatama, Manaal Faruqui, Chris Dyer, Noah Smith
Dani Yogatama, Manaal Faruqui, Chris Dyer, Noah Smith
+
  
Deep Learning as an Opportunity in Virtual Screening (#23)
+
Deep Learning as an Opportunity in Virtual Screening (#23)Thomas Unterthiner, Andreas Mayr, Günter Klambauer, Marvin Steijaert, Jörg Wenger, Hugo Ceulemans, Sepp Hochreiter
Thomas Unterthiner, Andreas Mayr, Günter Klambauer, Marvin Steijaert, Jörg Wenger, Hugo Ceulemans, Sepp Hochreiter
+
  
Revisit Long Short-Term Memory: An Optimization Perspective (#24)
+
Revisit Long Short-Term Memory: An Optimization Perspective (#24)Qi Lyu, J Zhu
Qi Lyu, J Zhu
+
  
Locally Scale-Invariant Convolutional Neural Networks (#26)
+
Locally Scale-Invariant Convolutional Neural Networks (#26)Angjoo Kanazawa, David Jacobs, Abhishek Sharma
Angjoo Kanazawa, David Jacobs, Abhishek Sharma
+
  
Deep Exponential Families (#28)
+
Deep Exponential Families (#28)Rajesh Ranganath, Linpeng Tang, Laurent Charlin, David Blei
Rajesh Ranganath, Linpeng Tang, Laurent Charlin, David Blei
+
  
Techniques for Learning Binary Stochastic Feedforward Neural Networks (#29)
+
Techniques for Learning Binary Stochastic Feedforward Neural Networks (#29)Tapani Raiko, mathias Berglund, Guillaume Alain, Laurent Dinh
Tapani Raiko, mathias Berglund, Guillaume Alain, Laurent Dinh
+
  
Inside-Outside Semantics: A Framework for Neural Models of Semantic Composition (#30)
+
Inside-Outside Semantics: A Framework for Neural Models of Semantic Composition (#30)Phong Le, Willem Zuidema
Phong Le, Willem Zuidema
+
  
Deep Multi-Instance Transfer Learning (#32)
+
Deep Multi-Instance Transfer Learning (#32)Dimitrios Kotzias, Misha Denil, Phil Blunsom, Nando De Freitas
Dimitrios Kotzias, Misha Denil, Phil Blunsom, Nando De Freitas
+
  
Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models (#33)
+
Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models (#33)Ryan Kiros, Ruslan Salakhutdinov, Richard Zemel
Ryan Kiros, Ruslan Salakhutdinov, Richard Zemel
+
  
Retrofitting Word Vectors to Semantic Lexicons (#34)
+
Retrofitting Word Vectors to Semantic Lexicons (#34)Manaal Faruqui, Jesse Dodge, Sujay Jauhar, Chris Dyer, Eduard Hovy, Noah Smith
Manaal Faruqui, Jesse Dodge, Sujay Jauhar, Chris Dyer, Eduard Hovy, Noah Smith
+
  
Deep Sequential Neural Network (#35)
+
Deep Sequential Neural Network (#35)Ludovic Denoyer, Patrick Gallinari
Ludovic Denoyer, Patrick Gallinari
+
  
Efficient Training Strategies for Deep Neural Network Language Models (#71)
+
Efficient Training Strategies for Deep Neural Network Language Models (#71)Holger Schwenk
Holger Schwenk
+
  
  
  
  
Posters, afternoon session (17:00-18:30):
+
*Posters, afternoon session (17:00-18:30):
  
Deep Learning for Answer Sentence Selection (#36)
+
Deep Learning for Answer Sentence Selection (#36)Lei Yu, Karl Moritz Hermann, Phil Blunsom, Stephen Pulman
Lei Yu, Karl Moritz Hermann, Phil Blunsom, Stephen Pulman
+
  
Synthetic Data and Artificial Neural Networks for Natural Scene Text Recognition (#37)
+
Synthetic Data and Artificial Neural Networks for Natural Scene Text Recognition (#37)Max Jaderberg, Karen Simonyan, Andrea Vedaldi, Andrew Zisserman
Max Jaderberg, Karen Simonyan, Andrea Vedaldi, Andrew Zisserman
+
  
Learning Torque-Driven Manipulation Primitives with a Multilayer Neural Network (#39)
+
Learning Torque-Driven Manipulation Primitives with a Multilayer Neural Network (#39)Sergey Levine, Pieter Abbeel
Sergey Levine, Pieter Abbeel
+
  
SimNets: A Generalization of Convolutional Networks (#41)
+
SimNets: A Generalization of Convolutional Networks (#41)Nadav Cohen, Amnon Shashua
Nadav Cohen, Amnon Shashua
+
  
Phonetics embedding learning with side information (#44)
+
Phonetics embedding learning with side information (#44)Gabriel Synnaeve, Thomas Schatz, Emmanuel Dupoux
Gabriel Synnaeve, Thomas Schatz, Emmanuel Dupoux
+
  
End-to-end Continuous Speech Recognition using Attention-based Recurrent NN: First Results (#45)
+
End-to-end Continuous Speech Recognition using Attention-based Recurrent NN: First Results (#45)Jan Chorowski, Dzmitry Bahdanau, KyungHyun Cho, Yoshua Bengio
Jan Chorowski, Dzmitry Bahdanau, KyungHyun Cho, Yoshua Bengio
+
  
BILBOWA: Fast Bilingual Distributed Representations without Word Alignments (#46)
+
BILBOWA: Fast Bilingual Distributed Representations without Word Alignments (#46)Stephan Gouws, Yoshua Bengio, Greg Corrado
Stephan Gouws, Yoshua Bengio, Greg Corrado
+
  
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling (#47)
+
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling (#47)Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, Yoshua Bengio
Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, Yoshua Bengio
+
  
Reweighted Wake-Sleep (#48)
+
Reweighted Wake-Sleep (#48)Jorg Bornschein, Yoshua Bengio
Jorg Bornschein, Yoshua Bengio
+
  
Explain Images with Multimodal Recurrent Neural Networks (#51)
+
Explain Images with Multimodal Recurrent Neural Networks (#51)Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Alan Yuille
Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Alan Yuille
+
  
Rectified Factor Networks and Dropout (#53)
+
Rectified Factor Networks and Dropout (#53)Djork-Arné Clevert, Thomas Unterthiner, Sepp Hochreiter
Djork-Arné Clevert, Thomas Unterthiner, Sepp Hochreiter
+
  
Towards Deep Neural Network Architectures Robust to Adversarials (#55)
+
Towards Deep Neural Network Architectures Robust to Adversarials (#55)Shixiang Gu, Luca Rigazio
Shixiang Gu, Luca Rigazio
+
  
Making Dropout Invariant to Transformations of Activation Functions and Inputs (#56)
+
Making Dropout Invariant to Transformations of Activation Functions and Inputs (#56)Jimmy Ba, Hui Yuan Xiong, Brendan Frey
Jimmy Ba, Hui Yuan Xiong, Brendan Frey
+
  
Aspect Specific Sentiment Analysis using Hierarchical Deep Learning (#58)
+
Aspect Specific Sentiment Analysis using Hierarchical Deep Learning (#58)Himabindu Lakkaraju, Richard Socher, Chris Manning
Himabindu Lakkaraju, Richard Socher, Chris Manning
+
  
Deep Directed Generative Autoencoders (#59)
+
Deep Directed Generative Autoencoders (#59)Sherjil Ozair, Yoshua Bengio
Sherjil Ozair, Yoshua Bengio
+
  
Conditional Generative Adversarial Nets (#60)
+
Conditional Generative Adversarial Nets (#60)Mehdi Mirza, Simon Osindero
Mehdi Mirza, Simon Osindero
+
  
Analyzing the Dynamics of Gated Auto-encoders (#61)
+
Analyzing the Dynamics of Gated Auto-encoders (#61)Daniel Im, Graham Taylor
Daniel Im, Graham Taylor
+
  
Representation as a Service (#63)
+
Representation as a Service (#63)Ouais Alsharif, Joelle Pineau, philip bachman
Ouais Alsharif, Joelle Pineau, philip bachman
+
  
Provable Methods for Training Neural Networks with Sparse Connectivity (#66)
+
Provable Methods for Training Neural Networks with Sparse Connectivity (#66)Hanie Sedghi, Anima Anandkumar
Hanie Sedghi, Anima Anandkumar
+
  
Trust Region Policy Optimization (#67)
+
Trust Region Policy Optimization (#67)John D. Schulman, Philipp C. Moritz, Sergey Levine, Michael I. Jordan, Pieter Abbeel
John D. Schulman, Philipp C. Moritz, Sergey Levine, Michael I. Jordan, Pieter Abbeel
+
  
Document Embedding with Paragraph Vectors (#68)
+
Document Embedding with Paragraph Vectors (#68)Andrew Dai, Christopher Olah, Quoc Le, Greg Corrado
Andrew Dai, Christopher Olah, Quoc Le, Greg Corrado
+
  
Backprop-Free Auto-Encoders (#69)
+
Backprop-Free Auto-Encoders (#69)Dong-Hyun Lee, Yoshua Bengio
Dong-Hyun Lee, Yoshua Bengio
+
  
Rate-Distortion Auto-Encoders (#73)
+
Rate-Distortion Auto-Encoders (#73)Luis Sanchez Giraldo, Jose Principe
Luis Sanchez Giraldo, Jose Principe
+
评论
+
Commenting disabled due to a network error. Please reload the page.
+
You do not have permission to add comments.
+
登录|最近的网站活动|举报滥用行为|打印页面|由 Google 协作平台强力驱动
+

2015年1月12日 (一) 06:47的最后版本

ready to share paper

  • E. Strubell,L. Vilnis,and A.McCallum "Training for fast sequential prediction using dynamic feature selection"[1](Dong Wang)
  • "Predictive Property of Hidden Representations in Recurrent Neural Network Language Models."(Xiaoxi Wang)
  • "embedding word tokens using a linear dynamical system"[2](Bin Yuan)

choose paper

list paper

Deep Learning and Representation Learning Workshop: NIPS 2014 --Accepted papers

  • Oral presentations:

cuDNN: Efficient Primitives for Deep Learning (#49)Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catanzaro, Evan Shelhamer

Distilling the Knowledge in a Neural Network (#65)Geoffrey Hinton, Oriol Vinyals, Jeff Dean

Supervised Learning in Dynamic Bayesian Networks (#54)Shamim Nemati, Ryan Adams

Deeply-Supervised Nets (#2)Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, Zhuowen Tu


  • Posters, morning session (11:30-14:45):

Unsupervised Feature Learning from Temporal Data (#3)Ross Goroshin, Joan Bruna, Arthur Szlam, Jonathan Tompson, David Eigen, Yann LeCun

Autoencoder Trees (#5)Ozan Irsoy, Ethem Alpaydin

Scheduled denoising autoencoders (#6)Krzysztof Geras, Charles Sutton

Learning to Deblur (#8)Christian Schuler, Michael Hirsch, Stefan Harmeling, Bernhard Schölkopf

A Winner-Take-All Method for Training Sparse Convolutional Autoencoders (#10)Alireza Makhzani, Brendan Frey

"Mental Rotation" by Optimizing Transforming Distance (#11)Weiguang Ding, Graham Taylor

On Importance of Base Model Covariance for Annealing Gaussian RBMs (#12)Taichi Kiwaki, Kazuyuki Aihara

Ultrasound Standard Plane Localization via Spatio-Temporal Feature Learning with Knowledge Transfer (#14)Hao Chen, Dong Ni, Ling Wu, Sheng Li, Pheng Heng

Understanding Locally Competitive Networks (#15)Rupesh Srivastava, Jonathan Masci, Faustino Gomez, Jurgen Schmidhuber

Unsupervised pre-training speeds up the search for good features: an analysis of a simplified model of neural network learning (#18)Avraham Ruderman

Analyzing Feature Extraction by Contrastive Divergence Learning in RBMs (#19)Ryo Karakida, Masato Okada, Shun-ichi Amari

Deep Tempering (#20)Guillaume Desjardins, Heng Luo, Aaron Courville, Yoshua Bengio

Learning Word Representations with Hierarchical Sparse Coding (#21)Dani Yogatama, Manaal Faruqui, Chris Dyer, Noah Smith

Deep Learning as an Opportunity in Virtual Screening (#23)Thomas Unterthiner, Andreas Mayr, Günter Klambauer, Marvin Steijaert, Jörg Wenger, Hugo Ceulemans, Sepp Hochreiter

Revisit Long Short-Term Memory: An Optimization Perspective (#24)Qi Lyu, J Zhu

Locally Scale-Invariant Convolutional Neural Networks (#26)Angjoo Kanazawa, David Jacobs, Abhishek Sharma

Deep Exponential Families (#28)Rajesh Ranganath, Linpeng Tang, Laurent Charlin, David Blei

Techniques for Learning Binary Stochastic Feedforward Neural Networks (#29)Tapani Raiko, mathias Berglund, Guillaume Alain, Laurent Dinh

Inside-Outside Semantics: A Framework for Neural Models of Semantic Composition (#30)Phong Le, Willem Zuidema

Deep Multi-Instance Transfer Learning (#32)Dimitrios Kotzias, Misha Denil, Phil Blunsom, Nando De Freitas

Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models (#33)Ryan Kiros, Ruslan Salakhutdinov, Richard Zemel

Retrofitting Word Vectors to Semantic Lexicons (#34)Manaal Faruqui, Jesse Dodge, Sujay Jauhar, Chris Dyer, Eduard Hovy, Noah Smith

Deep Sequential Neural Network (#35)Ludovic Denoyer, Patrick Gallinari

Efficient Training Strategies for Deep Neural Network Language Models (#71)Holger Schwenk



  • Posters, afternoon session (17:00-18:30):

Deep Learning for Answer Sentence Selection (#36)Lei Yu, Karl Moritz Hermann, Phil Blunsom, Stephen Pulman

Synthetic Data and Artificial Neural Networks for Natural Scene Text Recognition (#37)Max Jaderberg, Karen Simonyan, Andrea Vedaldi, Andrew Zisserman

Learning Torque-Driven Manipulation Primitives with a Multilayer Neural Network (#39)Sergey Levine, Pieter Abbeel

SimNets: A Generalization of Convolutional Networks (#41)Nadav Cohen, Amnon Shashua

Phonetics embedding learning with side information (#44)Gabriel Synnaeve, Thomas Schatz, Emmanuel Dupoux

End-to-end Continuous Speech Recognition using Attention-based Recurrent NN: First Results (#45)Jan Chorowski, Dzmitry Bahdanau, KyungHyun Cho, Yoshua Bengio

BILBOWA: Fast Bilingual Distributed Representations without Word Alignments (#46)Stephan Gouws, Yoshua Bengio, Greg Corrado

Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling (#47)Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, Yoshua Bengio

Reweighted Wake-Sleep (#48)Jorg Bornschein, Yoshua Bengio

Explain Images with Multimodal Recurrent Neural Networks (#51)Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Alan Yuille

Rectified Factor Networks and Dropout (#53)Djork-Arné Clevert, Thomas Unterthiner, Sepp Hochreiter

Towards Deep Neural Network Architectures Robust to Adversarials (#55)Shixiang Gu, Luca Rigazio

Making Dropout Invariant to Transformations of Activation Functions and Inputs (#56)Jimmy Ba, Hui Yuan Xiong, Brendan Frey

Aspect Specific Sentiment Analysis using Hierarchical Deep Learning (#58)Himabindu Lakkaraju, Richard Socher, Chris Manning

Deep Directed Generative Autoencoders (#59)Sherjil Ozair, Yoshua Bengio

Conditional Generative Adversarial Nets (#60)Mehdi Mirza, Simon Osindero

Analyzing the Dynamics of Gated Auto-encoders (#61)Daniel Im, Graham Taylor

Representation as a Service (#63)Ouais Alsharif, Joelle Pineau, philip bachman

Provable Methods for Training Neural Networks with Sparse Connectivity (#66)Hanie Sedghi, Anima Anandkumar

Trust Region Policy Optimization (#67)John D. Schulman, Philipp C. Moritz, Sergey Levine, Michael I. Jordan, Pieter Abbeel

Document Embedding with Paragraph Vectors (#68)Andrew Dai, Christopher Olah, Quoc Le, Greg Corrado

Backprop-Free Auto-Encoders (#69)Dong-Hyun Lee, Yoshua Bengio

Rate-Distortion Auto-Encoders (#73)Luis Sanchez Giraldo, Jose Principe