“Zhiyong Zhang”版本间的差异
来自cslt Wiki
(相同用户的11个中间修订版本未显示) | |||
第1行: | 第1行: | ||
+ | |||
+ | |||
+ | =Papers To Read = | ||
+ | * 1, Learned-Norm pooling for deep feedforward and recurrent neural networks | ||
+ | |||
+ | |||
=Task schedules= | =Task schedules= | ||
第5行: | 第11行: | ||
Priority | Tasks name | Status | Notions | Priority | Tasks name | Status | Notions | ||
-------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------- | ||
− | 1 | Bi-Softmax | | + | 1 | Bi-Softmax | ■■■□□□□□□□ | 1400h am training and problem fixing |
-------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------- | ||
2 | RNN+DAE | □□□□□□□□□□ | | 2 | RNN+DAE | □□□□□□□□□□ | | ||
第17行: | 第23行: | ||
* Now testing the source code on 1400h_8k data, but stange decoding results got.Need to further investigate. | * Now testing the source code on 1400h_8k data, but stange decoding results got.Need to further investigate. | ||
− | = | + | =Reading Lists= |
− | * | + | *[[媒体文件:Efficient_mini-batch_training_for_stochastic_optimization.pdf |苏圣 2015-10-29 Efficient_mini-batch_training_for_stochastic_optimization ]] |
+ | *[[媒体文件:2015_Fitnets-Hints for thin deep nets.pdf |张之勇 2015-10-29 2015_Fitnets-Hints for thin deep nets ]] | ||
+ | *http://www.cs.cmu.edu/~muli/file/minibatch_sgd.pdf |
2015年10月29日 (四) 07:14的最后版本
目录
Papers To Read
- 1, Learned-Norm pooling for deep feedforward and recurrent neural networks
Task schedules
Summary
-------------------------------------------------------------------------------------------------------- Priority | Tasks name | Status | Notions -------------------------------------------------------------------------------------------------------- 1 | Bi-Softmax | ■■■□□□□□□□ | 1400h am training and problem fixing -------------------------------------------------------------------------------------------------------- 2 | RNN+DAE | □□□□□□□□□□ | --------------------------------------------------------------------------------------------------------
Speech Recognition
Multi-lingual Am training
Bi-Softmax
- Using two distinct softmax for English and Chinese data.
- Testing on 100h-Ch+100h-En, better performance observed.
- Now testing the source code on 1400h_8k data, but stange decoding results got.Need to further investigate.