“Zhiyong Zhang”版本间的差异
来自cslt Wiki
(2位用户的15个中间修订版本未显示) | |||
第1行: | 第1行: | ||
− | |||
− | = | + | =Papers To Read = |
− | === | + | * 1, Learned-Norm pooling for deep feedforward and recurrent neural networks |
+ | |||
+ | |||
+ | =Task schedules= | ||
+ | |||
+ | ==Summary== | ||
+ | -------------------------------------------------------------------------------------------------------- | ||
+ | Priority | Tasks name | Status | Notions | ||
+ | -------------------------------------------------------------------------------------------------------- | ||
+ | 1 | Bi-Softmax | ■■■□□□□□□□ | 1400h am training and problem fixing | ||
+ | -------------------------------------------------------------------------------------------------------- | ||
+ | 2 | RNN+DAE | □□□□□□□□□□ | | ||
+ | -------------------------------------------------------------------------------------------------------- | ||
+ | |||
+ | ==Speech Recognition== | ||
+ | ===Multi-lingual Am training=== | ||
+ | ====Bi-Softmax==== | ||
+ | * Using two distinct softmax for English and Chinese data. | ||
+ | * Testing on 100h-Ch+100h-En, better performance observed. | ||
+ | * Now testing the source code on 1400h_8k data, but stange decoding results got.Need to further investigate. | ||
+ | |||
+ | =Reading Lists= | ||
+ | *[[媒体文件:Efficient_mini-batch_training_for_stochastic_optimization.pdf |苏圣 2015-10-29 Efficient_mini-batch_training_for_stochastic_optimization ]] | ||
+ | *[[媒体文件:2015_Fitnets-Hints for thin deep nets.pdf |张之勇 2015-10-29 2015_Fitnets-Hints for thin deep nets ]] | ||
+ | *http://www.cs.cmu.edu/~muli/file/minibatch_sgd.pdf |
2015年10月29日 (四) 07:14的最后版本
目录
Papers To Read
- 1, Learned-Norm pooling for deep feedforward and recurrent neural networks
Task schedules
Summary
-------------------------------------------------------------------------------------------------------- Priority | Tasks name | Status | Notions -------------------------------------------------------------------------------------------------------- 1 | Bi-Softmax | ■■■□□□□□□□ | 1400h am training and problem fixing -------------------------------------------------------------------------------------------------------- 2 | RNN+DAE | □□□□□□□□□□ | --------------------------------------------------------------------------------------------------------
Speech Recognition
Multi-lingual Am training
Bi-Softmax
- Using two distinct softmax for English and Chinese data.
- Testing on 100h-Ch+100h-En, better performance observed.
- Now testing the source code on 1400h_8k data, but stange decoding results got.Need to further investigate.