“第十二章 机器学习基本流程”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
演示链接
第27行: 第27行:
  
 
* 优化方法在线演示 [https://www.benfrederickson.com/numerical-optimization/]
 
* 优化方法在线演示 [https://www.benfrederickson.com/numerical-optimization/]
 +
* 基于神经网络的二分类任务演示 [https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html]
  
 
==开发者资源==
 
==开发者资源==

2022年8月2日 (二) 14:38的版本

教学资料

  • 教学参考
  • 课件
  • 小清爱提问:什么是爬山法?[1]
  • 小清爱提问:什么是模拟退火算法?[2]
  • 小清爱提问:什么是奥卡姆剃刀准则? [3]
  • 小清爱提问:为什么说数据是人工智能的粮食?[4]


扩展阅读

  • 维基百科:没有免费的午餐定理 [5]
  • 维基百科:梯度下降法[6][7]
  • 百度百科:梯度下降法[8][9]
  • 知乎:梯度下降法[10]
  • 维基百科:模拟退火算法 [11][12]
  • 百度百科:模拟退火算法[13][14]
  • 知乎:模拟退火详解 [15]
  • 维基百科:牛顿法 [16][17]
  • 维基百科:奥卡姆剃刀[18][19]
  • 百度百科:奥卡姆剃刀[20][21]
  • 维基百科:过拟合[22][23]

演示链接

  • 优化方法在线演示 [24]
  • 基于神经网络的二分类任务演示 [25]

开发者资源

高级读者

  • 王东,机器学习导论,第一章“绪论”,第十一章“优化方法”[26]
  • Wolpert, David (1996), "The Lack of A Priori Distinctions between Learning Algorithms", Neural Computation, pp. 1341–1390 [27]