“Zhiyong Zhang”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
 
(相同用户的11个中间修订版本未显示)
第1行: 第1行:
 +
 +
 +
=Papers To Read =
 +
* 1, Learned-Norm pooling for deep feedforward and recurrent neural networks
 +
 +
 
=Task schedules=
 
=Task schedules=
  
第5行: 第11行:
 
     Priority | Tasks name                    |      Status          |    Notions
 
     Priority | Tasks name                    |      Status          |    Notions
 
     --------------------------------------------------------------------------------------------------------     
 
     --------------------------------------------------------------------------------------------------------     
         1    | Bi-Softmax                    | ■■■■■■■□□□ | 1400h am training and problem fixing
+
         1    | Bi-Softmax                    | ■■■□□□□□□□ | 1400h am training and problem fixing
 
     --------------------------------------------------------------------------------------------------------
 
     --------------------------------------------------------------------------------------------------------
 
         2    | RNN+DAE                      | □□□□□□□□□□ |
 
         2    | RNN+DAE                      | □□□□□□□□□□ |
第17行: 第23行:
 
* Now testing the source code on 1400h_8k data, but stange decoding results got.Need to further investigate.
 
* Now testing the source code on 1400h_8k data, but stange decoding results got.Need to further investigate.
  
=Papers To Read =
+
=Reading Lists=
* 1, Learned-Norm pooling for deep feedforward and recurrent neural networks
+
*[[媒体文件:Efficient_mini-batch_training_for_stochastic_optimization.pdf |苏圣 2015-10-29 Efficient_mini-batch_training_for_stochastic_optimization ]]
 +
*[[媒体文件:2015_Fitnets-Hints for thin deep nets.pdf |张之勇 2015-10-29 2015_Fitnets-Hints for thin deep nets ]]
 +
*http://www.cs.cmu.edu/~muli/file/minibatch_sgd.pdf

2015年10月29日 (四) 07:14的最后版本


Papers To Read

  • 1, Learned-Norm pooling for deep feedforward and recurrent neural networks


Task schedules

Summary

   --------------------------------------------------------------------------------------------------------
    Priority | Tasks name                    |      Status          |     Notions
   --------------------------------------------------------------------------------------------------------    
        1    | Bi-Softmax                    | ■■■□□□□□□□ | 1400h am training and problem fixing
   --------------------------------------------------------------------------------------------------------
        2    | RNN+DAE                       | □□□□□□□□□□ |
   --------------------------------------------------------------------------------------------------------

Speech Recognition

Multi-lingual Am training

Bi-Softmax

  • Using two distinct softmax for English and Chinese data.
  • Testing on 100h-Ch+100h-En, better performance observed.
  • Now testing the source code on 1400h_8k data, but stange decoding results got.Need to further investigate.

Reading Lists