“Zhiyong Zhang”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
(以“==Task schedual== ===LM development=== ==To Do== === To Read papers===”为内容创建页面)
 
 
(2位用户的16个中间修订版本未显示)
第1行: 第1行:
==Task schedual==
 
===LM development===
 
  
==To Do==
+
 
=== To Read papers===
+
=Papers To Read =
 +
* 1, Learned-Norm pooling for deep feedforward and recurrent neural networks
 +
 
 +
 
 +
=Task schedules=
 +
 
 +
==Summary==
 +
    --------------------------------------------------------------------------------------------------------
 +
    Priority | Tasks name                    |      Status          |    Notions
 +
    --------------------------------------------------------------------------------------------------------   
 +
        1    | Bi-Softmax                    | ■■■□□□□□□□ | 1400h am training and problem fixing
 +
    --------------------------------------------------------------------------------------------------------
 +
        2    | RNN+DAE                      | □□□□□□□□□□ |
 +
    --------------------------------------------------------------------------------------------------------
 +
 
 +
==Speech Recognition==
 +
===Multi-lingual Am training===
 +
====Bi-Softmax====
 +
* Using two distinct softmax for English and Chinese data.
 +
* Testing on 100h-Ch+100h-En, better performance observed.
 +
* Now testing the source code on 1400h_8k data, but stange decoding results got.Need to further investigate.
 +
 
 +
=Reading Lists=
 +
*[[媒体文件:Efficient_mini-batch_training_for_stochastic_optimization.pdf |苏圣 2015-10-29 Efficient_mini-batch_training_for_stochastic_optimization ]]
 +
*[[媒体文件:2015_Fitnets-Hints for thin deep nets.pdf |张之勇 2015-10-29 2015_Fitnets-Hints for thin deep nets ]]
 +
*http://www.cs.cmu.edu/~muli/file/minibatch_sgd.pdf

2015年10月29日 (四) 07:14的最后版本


Papers To Read

  • 1, Learned-Norm pooling for deep feedforward and recurrent neural networks


Task schedules

Summary

   --------------------------------------------------------------------------------------------------------
    Priority | Tasks name                    |      Status          |     Notions
   --------------------------------------------------------------------------------------------------------    
        1    | Bi-Softmax                    | ■■■□□□□□□□ | 1400h am training and problem fixing
   --------------------------------------------------------------------------------------------------------
        2    | RNN+DAE                       | □□□□□□□□□□ |
   --------------------------------------------------------------------------------------------------------

Speech Recognition

Multi-lingual Am training

Bi-Softmax

  • Using two distinct softmax for English and Chinese data.
  • Testing on 100h-Ch+100h-En, better performance observed.
  • Now testing the source code on 1400h_8k data, but stange decoding results got.Need to further investigate.

Reading Lists