“ASR:2015-10-19”版本间的差异
来自cslt Wiki
(→Speech Processing) |
(→Speech Processing) |
||
第7行: | 第7行: | ||
*train monophone RNN --zhiyuan | *train monophone RNN --zhiyuan | ||
:* end to end MPE | :* end to end MPE | ||
+ | :*http://192.168.0.51:5555/cgi-bin/cvss/cvss_request.pl?account=zxw&step=view_request&cvssid=446 | ||
* train RNN MPE using large dataset--mengyuan | * train RNN MPE using large dataset--mengyuan | ||
:* better mpe result observed ,unknown errors in previous lstm mpe compiling kaldi | :* better mpe result observed ,unknown errors in previous lstm mpe compiling kaldi | ||
第54行: | 第55行: | ||
:* 7*2048 8k 1400h tdnn training Xent done | :* 7*2048 8k 1400h tdnn training Xent done | ||
:* nnet3 mpe code is under investigation | :* nnet3 mpe code is under investigation | ||
+ | :*http://192.168.0.51:5555/cgi-bin/cvss/cvss_request.pl?account=zxw&step=view_request&cvssid=472 | ||
===multi-task=== | ===multi-task=== |
2015年10月26日 (一) 07:29的版本
目录
- 1 Speech Processing
- 2 Text Processing
- 3 financial group
Speech Processing
AM development
Environment
RNN AM
- train monophone RNN --zhiyuan
- train RNN MPE using large dataset--mengyuan
- better mpe result observed ,unknown errors in previous lstm mpe compiling kaldi
- http://192.168.0.51:5555/cgi-bin/cvss/cvss_request.pl?account=zxw&step=view_request&cvssid=403
Learning rate tunning
- sequence training -Xiangyu
Mic-Array
- hold
- compute EER with kaldi
Data selection unsupervised learning
- hold
- acoustic feature based submodular using Pingan dataset --zhiyong
- write code to speed up --zhiyong
- curriculum learning --zhiyong
RNN-DAE(Deep based Auto-Encode-RNN)
- hold
- RNN-DAE has worse performance than DNN-DAE because training dataset is small
- extract real room impulse to generate WSJ reverberation data, and then train RNN-DAE
Ivector&Dvector based ASR
- learning from ivector --Lantian
- CNN ivector learning
- DNN ivector learning
- binary ivector
- metric learning
language vector
- write a paper--zhiyuan
- hold
- language vector is added to multi hidden layers--zhiyuan
- write code done
- check code
- http://192.168.0.51:5555/cgi-bin/cvss/cvss_request.pl?account=zxw&step=view_request&cvssid=480
- RNN language vector
- hold
multi-GPU
- multi-stream training --Sheng Su
- the problem of more than two GPUs is solved
- kaldi-nnet3 --Xuewei
- 7*2048 8k 1400h tdnn training Xent done
- nnet3 mpe code is under investigation
- http://192.168.0.51:5555/cgi-bin/cvss/cvss_request.pl?account=zxw&step=view_request&cvssid=472
multi-task
- test according to selt-information neural structure learning --mengyuan
- write code done
- no significant performance improvement observed
- speech rate learning --xiangyu
- no significant performance improvement observed
- http://192.168.0.51:5555/cgi-bin/cvss/cvss_request.pl?account=zxw&step=view_request&cvssid=483
Text Processing
RNN LM
- character-lm rnn(hold)
- lstm+rnn
- check the lstm-rnnlm code about how to Initialize and update learning rate.(hold)
Neural Based Document Classification
- (hold)
RNN Rank Task
- Test.
- Paper: RNN Rank Net.
- (hold)
- Output rank information.
Graph RNN
- Entity path embeded to entity.
- (hold)
RNN Word Segment
- Set bound to word segment.
- (hold)
Seq to Seq(09-15)
- Review papers.
- Reproduce baseline. (08-03 <--> 08-17)
Order representation
- Nested Dropout
- semi-linear --> neural based auto-encoder.
- modify the objective function(hold)
Balance Representation
- Find error signal
Recommendation
- Reproduce baseline.
- LDA matrix dissovle.
- LDA (Text classification & Recommendation System) --> AAAI
RNN based QA
- Read Source Code.
- Attention based QA.
- Coding.
RNN Poem Process
- Seq based BP.
- (hold)
Text Group Intern Project
Buddhist Process
- (hold)
RNN Poem Process
- Done by Haichao yu & Chaoyuan zuo Mentor : Tianyi Luo.
RNN Document Vector
- (hold)
Image Baseline
- Demo Release.
- Paper Report.
- Read CNN Paper.
Text Intuitive Idea
Trace Learning
- (Hold)
Match RNN
- (Hold)
financial group
model research
- RNN
- online model, update everyday
- modify cost function and learning method
- add more feature
rule combination
- GA method to optimize the model
basic rule
- classical tenth model
multiple-factor
- add more factor
- use sparse model
display
- bug fixed
- buy rule fixed
data
- data api
- download the future data and factor data