“Zhiyong Zhang”版本间的差异
来自cslt Wiki
(→Task To Do) |
(→Technical Report To Write) |
||
第14行: | 第14行: | ||
=Technical Report To Write= | =Technical Report To Write= | ||
− | * 1, DNN-DAE based noise cancellation | + | * 1, DNN-DAE based noise cancellation --Mengyuan Zhao |
− | * 2, Speech Rate DNN speech recognition | + | * 2, Speech Rate DNN speech recognition --Shi Yin |
− | * 3, CNN+fbank feature combination | + | * 3, CNN+fbank feature combination --Mian Wang |
− | * 4, Uyghur low-resource acoustic model enhancement | + | * 4, Uyghur low-resource acoustic model enhancement --Shi Yin |
− | * 5, Uyghur 20h database release | + | * 5, Uyghur 20h database release -- |
=Papers To Read = | =Papers To Read = |
2015年1月14日 (三) 06:39的版本
目录
Task To Do
- 1, RNN speech recognition (Tied-context-dependent-state and End-to-End)
- 2, Real environment noise cancellation(DNN-DAE/CNN-DAE/RNN-DAE: echo or reverberation)
- 3, Integrate the class information to HCLG fst for speech recognition
- 4, Multi-Mode features based VAD
- 5, DNN based Language identification and Speaker identification
- 6, Distant speech recognition(Reverberation, Mutli-microphones)
- 7, Voice conversation
- 8, Unbound activation function(Rectifier/Maxout/Pnorm) go-through searching method.
- 9, Sparse DNN
- 10, Neural network visulization
- 11, DAE+dropout
Technical Report To Write
- 1, DNN-DAE based noise cancellation --Mengyuan Zhao
- 2, Speech Rate DNN speech recognition --Shi Yin
- 3, CNN+fbank feature combination --Mian Wang
- 4, Uyghur low-resource acoustic model enhancement --Shi Yin
- 5, Uyghur 20h database release --
Papers To Read
- 1, Learned-Norm pooling for deep feedforward and recurrent neural networks
Task schedules
Summary
-------------------------------------------------------------------------------------------------------- Priority | Tasks name | Status | Notions -------------------------------------------------------------------------------------------------------- 1 | Bi-Softmax | ■■■□□□□□□□ | 1400h am training and problem fixing -------------------------------------------------------------------------------------------------------- 2 | RNN+DAE | □□□□□□□□□□ | --------------------------------------------------------------------------------------------------------
Speech Recognition
Multi-lingual Am training
Bi-Softmax
- Using two distinct softmax for English and Chinese data.
- Testing on 100h-Ch+100h-En, better performance observed.
- Now testing the source code on 1400h_8k data, but stange decoding results got.Need to further investigate.