“2014-11-25”版本间的差异
来自cslt Wiki
(→patent) |
(→Text Processing) |
||
(3位用户的5个中间修订版本未显示) | |||
第4行: | 第4行: | ||
==== Environment ==== | ==== Environment ==== | ||
* Already buy 3 760GPU | * Already buy 3 760GPU | ||
− | * grid-9 760GPU crashed again; | + | * grid-9 760GPU crashed again; |
− | * | + | * Change 760gpu card of grid-12 and grid-14 |
− | + | ||
==== Sparse DNN ==== | ==== Sparse DNN ==== | ||
* Performance improvement found when pruned slightly | * Performance improvement found when pruned slightly | ||
− | * need retraining for unpruned one; training loss | + | * need retraining for unpruned one; training loss |
− | + | ||
* details at http://liuc.cslt.org/pages/sparse.html | * details at http://liuc.cslt.org/pages/sparse.html | ||
第29行: | 第27行: | ||
* Drop out | * Drop out | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
:* AURORA4 dataset | :* AURORA4 dataset | ||
− | + | :* Use different proportion of noise data to investigate the effect of xEnt and mpe and dropout | |
− | + | :** Problem 1) The effect of dropout in different noise proportion; | |
− | + | 2) The effect of MPE in different noise proportion; | |
− | + | 3) The effect of MPE+dropout in different noise proportion. | |
− | + | :**http://cslt.riit.tsinghua.edu.cn/cgi-bin/cvss/cvss_request.pl?step=view_request&cvssid=261 | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | :** Find and test unknown noise test-data.(++) | |
− | + | ||
− | :** Find and test unknown noise test-data.(+) | + | |
:** Have done the droptout on normal trained XEnt NNET , eg wsj(learn-rate:1e-4/1e-5). Seems small learn-rate get the balance of accuracy and train-time. | :** Have done the droptout on normal trained XEnt NNET , eg wsj(learn-rate:1e-4/1e-5). Seems small learn-rate get the balance of accuracy and train-time. | ||
− | :** | + | :** Debug the low cv frame-accuracy |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
* MaxOut | * MaxOut | ||
第93行: | 第43行: | ||
1) AURORA4 -15h | 1) AURORA4 -15h | ||
NOTE: gs==groupsize | NOTE: gs==groupsize | ||
− | + | :* pretraining based maxout | |
+ | :** Select units in Groupsize interval, but need low learn-rate | ||
+ | :** Force accept the first iteration. Jump out from the local-minimum | ||
+ | |||
+ | * P-norm | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
model/testcase(WER) | test_clean_wv1 | test_airport_wv1 | test_babble_wv1 | test_car_wv1 | model/testcase(WER) | test_clean_wv1 | test_airport_wv1 | test_babble_wv1 | test_car_wv1 | ||
--------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------- | ||
− | + | nnet_std-baseline | 6.04 | 29.91 | 27.76 | 16.37 | |
--------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------- | ||
− | + | lr0.008-1e-7_gs6_p2 | 6.17 | 27.51 | 24.98 | 15.40 | |
--------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------- | ||
− | + | lr0.008-1e-7_gs10_p2 | 6.40 | 28.18 | 26.60 | 15.82 | |
--------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------- | ||
− | + | lr0.008-1e-7_gs10_p3 | 6.45 | 28.73 | 30.01 | 20.24 | |
--------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------- | ||
− | + | lr0.04-4e-3_gs6_p2 | 6.47 | 27.42 | 27.48 | 17.35 | |
--------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------- | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
* Convolutive network (+) | * Convolutive network (+) | ||
:* AURORA 4 | :* AURORA 4 | ||
+ | :** 1) | ||
+ | ----------------------------------------------------------------------------------------------------------------------- | ||
| wer | hid-layers | hid-dim | delta-order | splice | lda-dim | learn-rate | pooling | TBA | | wer | hid-layers | hid-dim | delta-order | splice | lda-dim | learn-rate | pooling | TBA | ||
----------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------- | ||
第156行: | 第80行: | ||
cnn_std_1200_3 | 6.66 | 5 | 1200 | 0 | 4 | 198 | 0.008 | 3 |patch-dim1 7 | cnn_std_1200_3 | 6.66 | 5 | 1200 | 0 | 4 | 198 | 0.008 | 3 |patch-dim1 7 | ||
----------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------- | ||
+ | :** 2) | ||
+ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ||
+ | | %WER | Dnnhiddenlayers | hid-dim | pooling | CNN_unit |cnn_init_opts | ||
+ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ||
+ | cnn_nonlda_std | 5.73 | 4 | 1200 | 3 | |"--patch-dim1 8" input_dim ~ patch-dim1 | ||
+ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ||
+ | cnn_nonlda_cnnunit_384 | 5.85 | 4 | 1200 | 3 | 384 |"--patch-dim1 8 --num-filters2 384" | ||
+ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ||
+ | cnn_nonlda_cnnunit_220 | ---------- | 4 | 1200 | 3 | 220 |"--patch-dim1 8 --num-filters2 220" | ||
+ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ||
− | + | ====MSE==== | |
+ | (1) AURORA4 (train_clean) | ||
+ | drop-retention/testcase(WER) | test_clean_wv1 | test_airport_wv1 | test_babble_wv1 | test_car_wv1 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | std-baseline_xent | 6.04 | 29.91 | 27.76 | 16.37 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | std-baseline_mse | 6.05 | 31.30 | 30.03 | 15.77 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | |||
+ | ====DAE(Deep Atuo-Encode)==== | ||
+ | (1) train_clean | ||
+ | drop-retention/testcase(WER)| test_clean_wv1 | test_airport_wv1 | test_babble_wv1 | test_car_wv1 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | std-xEnt-sigmoid-baseline| 6.04 | 29.91 | 27.76 | 16.37 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | std+dae_cmvn_noFT_2-1200 | 7.10 | 15.33 | 16.58 | 9.23 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | std+dae_cmvn_splice5_2-100 | 8.19 | 15.21 | 15.25 | 9.31 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
====Denoising & Farfield ASR==== | ====Denoising & Farfield ASR==== | ||
第165行: | 第117行: | ||
====VAD==== | ====VAD==== | ||
* Frame energy feature extraction, done | * Frame energy feature extraction, done | ||
− | * Harmonics and Teager energy features being investigation | + | * Harmonics and Teager energy features being investigation (+) |
− | * Previous results to be organized for a paper | + | * Previous results to be organized for a paper |
+ | * MPE model VAD test | ||
====Speech rate training==== | ====Speech rate training==== | ||
− | * Data ready on tencent set; some errors on speech rate dependent model | + | * Data ready on tencent set; some errors on speech rate dependent model |
− | * Retrain new model | + | * Retrain new model(+) |
====Scoring==== | ====Scoring==== | ||
第176行: | 第129行: | ||
* harmonics based timber comparison: frequency based feature is better | * harmonics based timber comparison: frequency based feature is better | ||
* GMM based timber comparison is done. Similar to speaker recognition | * GMM based timber comparison is done. Similar to speaker recognition | ||
− | * TODO: Code checkin and technique report | + | * TODO: Code checkin and '''technique report''' |
====Confidence==== | ====Confidence==== | ||
第185行: | 第138行: | ||
===Speaker ID=== | ===Speaker ID=== | ||
* Preparing GMM-based server. | * Preparing GMM-based server. | ||
− | * EER ~ | + | * EER ~ 4% (GMM-based system)--Text independent |
+ | * EER ~ 6%(1s) / 0.5%(5s) (GMM-based system)--Text dependent | ||
* test different number of components; fast i-vector computing | * test different number of components; fast i-vector computing | ||
第191行: | 第145行: | ||
* GMM-based language is ready. | * GMM-based language is ready. | ||
* Delivered to Jietong | * Delivered to Jietong | ||
+ | * Prepare the test-case | ||
− | === | + | ===Voice Conversion=== |
− | + | * Yiye is reading materials | |
− | * | + | |
2014年12月8日 (一) 02:00的最后版本
目录
Speech Processing
AM development
Environment
- Already buy 3 760GPU
- grid-9 760GPU crashed again;
- Change 760gpu card of grid-12 and grid-14
Sparse DNN
- Performance improvement found when pruned slightly
- need retraining for unpruned one; training loss
- details at http://liuc.cslt.org/pages/sparse.html
RNN AM
- Initial nnet seems not very well, need to be pre-trained or test lower learn-rate.
- For AURORA 4 1h/epoch, model train done.
- Using AURORA 4 short-sentence with a smaller number of targets.(+)
- Adjusting the learning rate.(+)
- Trying toolkit of Microsoft.(+)
- details at http://liuc.cslt.org/pages/rnn.html
A new nnet training scheduler
- Initial code done. No better than original one considering of taking much more iterations.
- details at http://liuc.cslt.org/pages/nnet-sched.html
Drop out & Rectification & convolutive network
- Drop out
- AURORA4 dataset
- Use different proportion of noise data to investigate the effect of xEnt and mpe and dropout
- Problem 1) The effect of dropout in different noise proportion;
- Use different proportion of noise data to investigate the effect of xEnt and mpe and dropout
2) The effect of MPE in different noise proportion; 3) The effect of MPE+dropout in different noise proportion.
- Find and test unknown noise test-data.(++)
- Have done the droptout on normal trained XEnt NNET , eg wsj(learn-rate:1e-4/1e-5). Seems small learn-rate get the balance of accuracy and train-time.
- Debug the low cv frame-accuracy
- MaxOut
- 6min/epoch
1) AURORA4 -15h NOTE: gs==groupsize
- pretraining based maxout
- Select units in Groupsize interval, but need low learn-rate
- Force accept the first iteration. Jump out from the local-minimum
- pretraining based maxout
- P-norm
--------------------------------------------------------------------------------------------------------- model/testcase(WER) | test_clean_wv1 | test_airport_wv1 | test_babble_wv1 | test_car_wv1 --------------------------------------------------------------------------------------------------------- nnet_std-baseline | 6.04 | 29.91 | 27.76 | 16.37 --------------------------------------------------------------------------------------------------------- lr0.008-1e-7_gs6_p2 | 6.17 | 27.51 | 24.98 | 15.40 --------------------------------------------------------------------------------------------------------- lr0.008-1e-7_gs10_p2 | 6.40 | 28.18 | 26.60 | 15.82 --------------------------------------------------------------------------------------------------------- lr0.008-1e-7_gs10_p3 | 6.45 | 28.73 | 30.01 | 20.24 --------------------------------------------------------------------------------------------------------- lr0.04-4e-3_gs6_p2 | 6.47 | 27.42 | 27.48 | 17.35 ---------------------------------------------------------------------------------------------------------
- Convolutive network (+)
- AURORA 4
:** 1) ----------------------------------------------------------------------------------------------------------------------- | wer | hid-layers | hid-dim | delta-order | splice | lda-dim | learn-rate | pooling | TBA ----------------------------------------------------------------------------------------------------------------------- cnn_std_baseline| 6.70 | 4 | 1200 | 0 | 4 | 198 | 0.008 | 3 |patch-dim1 7 ----------------------------------------------------------------------------------------------------------------------- cnn_std_1000_3 | 6.61 | 4 | 1000 | 0 | 4 | 198 | 0.008 | 3 |patch-dim1 7 ----------------------------------------------------------------------------------------------------------------------- cnn_std_1400_3 | 6.61 | 4 | 1400 | 0 | 4 | 198 | 0.008 | 3 |patch-dim1 7 ----------------------------------------------------------------------------------------------------------------------- cnn_std_1200_4 | 6.91 | 4 | 1200 | 0 | 4 | 198 | 0.008 | 4 |patch-dim1 6 ----------------------------------------------------------------------------------------------------------------------- cnn_std_1200_2 | - | 4 | 1200 | 0 | 4 | 198 | 0.008 | 2 |patch-dim1 8 ----------------------------------------------------------------------------------------------------------------------- cnn_std_1200_3 | 6.66 | 5 | 1200 | 0 | 4 | 198 | 0.008 | 3 |patch-dim1 7 ----------------------------------------------------------------------------------------------------------------------- :** 2) ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | %WER | Dnnhiddenlayers | hid-dim | pooling | CNN_unit |cnn_init_opts ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- cnn_nonlda_std | 5.73 | 4 | 1200 | 3 | |"--patch-dim1 8" input_dim ~ patch-dim1 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- cnn_nonlda_cnnunit_384 | 5.85 | 4 | 1200 | 3 | 384 |"--patch-dim1 8 --num-filters2 384" ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- cnn_nonlda_cnnunit_220 | ---------- | 4 | 1200 | 3 | 220 |"--patch-dim1 8 --num-filters2 220" ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
MSE
(1) AURORA4 (train_clean) drop-retention/testcase(WER) | test_clean_wv1 | test_airport_wv1 | test_babble_wv1 | test_car_wv1 --------------------------------------------------------------------------------------------------------- std-baseline_xent | 6.04 | 29.91 | 27.76 | 16.37 --------------------------------------------------------------------------------------------------------- std-baseline_mse | 6.05 | 31.30 | 30.03 | 15.77 ---------------------------------------------------------------------------------------------------------
DAE(Deep Atuo-Encode)
(1) train_clean drop-retention/testcase(WER)| test_clean_wv1 | test_airport_wv1 | test_babble_wv1 | test_car_wv1 --------------------------------------------------------------------------------------------------------- std-xEnt-sigmoid-baseline| 6.04 | 29.91 | 27.76 | 16.37 --------------------------------------------------------------------------------------------------------- std+dae_cmvn_noFT_2-1200 | 7.10 | 15.33 | 16.58 | 9.23 --------------------------------------------------------------------------------------------------------- std+dae_cmvn_splice5_2-100 | 8.19 | 15.21 | 15.25 | 9.31 ---------------------------------------------------------------------------------------------------------
Denoising & Farfield ASR
- ICASSP paper submitted.
- HOLD
VAD
- Frame energy feature extraction, done
- Harmonics and Teager energy features being investigation (+)
- Previous results to be organized for a paper
- MPE model VAD test
Speech rate training
- Data ready on tencent set; some errors on speech rate dependent model
- Retrain new model(+)
Scoring
- Timber Comparison done.
- harmonics based timber comparison: frequency based feature is better
- GMM based timber comparison is done. Similar to speaker recognition
- TODO: Code checkin and technique report
Confidence
- Reproduce the experiments on fisher dataset.
- Use the fisher DNN model to decode all-wsj dataset
- preparing scoring for puqiang data
Speaker ID
- Preparing GMM-based server.
- EER ~ 4% (GMM-based system)--Text independent
- EER ~ 6%(1s) / 0.5%(5s) (GMM-based system)--Text dependent
- test different number of components; fast i-vector computing
Language ID
- GMM-based language is ready.
- Delivered to Jietong
- Prepare the test-case
Voice Conversion
- Yiye is reading materials
Text Processing
LM development
Domain specific LM
- domain lm(need to discuss with xiaoxi)
- embedded language model(this week)
- train some more LMs with Zhenlong (dianzishu sogou bbs chosen)("need result").
- keep on training sogou2T lm(14/16 on 3rd iteration).(this week)
- new dict.
- handover of this work to hanzhenglong, give a simple docuemnt(this week)
tag LM
- different weight 2014-Nov-23,Monday
method | tag-jsgf | corpus | weight | wer | ser | add_wer |
---|---|---|---|---|---|---|
experiment 3 | 500(490 less frequent and 10 unseen) | 500 | 0.1 | 16.72 | 77.92 | - |
0.3 | 15.42 | 71.25 | - | |||
0.5 | 15.40 | 69.58 | - | |||
0.7 | 15.28 | 68.75 | - | |||
0.8 | 15.38 | 68.33 | - | |||
1 | 15.98 | 69.17 | - | |||
2 | 19.08 | 70.83 | - | |||
experiment 4 | 100(90 less frequent and 10 unseen) | 100 | 0.008 | 15.28 | 69.58 | - |
0.02 | 14.84 | 69.58 | - | |||
0.05 | 15.11 | 69.58 | - | |||
0.1 | 15.30 | 69.75 | - | |||
0.3 | 16.01 | 70.42 | - | |||
experiment 5 | 500 | 100 | 0.01 | 17.57 | 78.75 | - |
0.05 | 16.84 | 77.08 | - | |||
0.08 | 16.59 | 76.25 | - | |||
0.15 | 16.76 | 75.42 | - | |||
experiment 6 | 1280 | 500 | 0.1 | 17.42 | 77.92 | - |
0.5 | 15.20 | 69.17 | - | |||
0.8 | 15.30 | 68.33 | - | |||
1 | 15.69 | 69.58 | - |
- conclusion:
1. compare experiment 3 with experiment 5: same jsgf file, but the tag number in corpus if different, we can find that when add more tag to corpus, the optimal weight is larger. 2. compare experiment 3 with experiment 6: same tag number in corpus, but different jsgf size, we can find that different jsgf size have the same optimal weight.
- need to do
- tag Probability should test add the weight(hanzhenglong) and handover to hanzhenglong (this week)
- make a summary about tag-lm and journal paper(wxx and yuanb)(two weeks).
RNN LM
- rnn
- test wer RNNLM on Chinese data from jietong-data(this week)
- check the rnnlm code about how to Initialize and update learning rate.
- generate the ngram model from rnnlm and test the ppl with different size txt.(this week)
- lstm+rnn
- check the lstm-rnnlm code about how to Initialize and update learning rate.
Word2Vector
W2V based doc classification
- Initial results variable Bayesian GMM obtained. Performance is not as good as the conventional GMM.(hold)
- Non-linear inter-language transform: English-Spanish-Czch: wv model training done, transform model on investigation
Knowledge vector
- Knowledge vector started
- begin to code
Character to wordr
- Character to word conversion(hold)
- prepare the task: word similarity
- prepare the dict.
Translation
- v5.0 demo released
- cut the dict and use new segment-tool
QA
deatil:[1]
Spell mistake
- retrain the ngram model(caoli)
improve fuzzy match
- add Synonyms similarity using MERT-4 method(hold)
improve lucene search
- using MERT-4 method to get good value of multi-feature.like IDF,NER,baidu_weight,keyword etc.(liurong this month)
Multi-Scene Recognition
- handover to duxk(this week)
XiaoI framework
- give a report about xiaoI framework
- new inter will install SEMPRE
patent
- GA-method improve the QA(this week)