“2014-11-25”版本间的差异
来自cslt Wiki
(→Text Processing) |
|||
第155行: | 第155行: | ||
====Domain specific LM==== | ====Domain specific LM==== | ||
− | * domain lm | + | * domain lm |
− | :* embedded language model | + | :* embedded language model done |
− | :* train some more LMs with Zhenlong (dianzishu sogou bbs chosen) | + | :* train some more LMs with Zhenlong (dianzishu sogou bbs chosen),put result on cvss. |
− | :* | + | :* small count done and ready to merge it. |
* new dict. | * new dict. | ||
− | :* | + | :* dongxu help hanzhenglong to set up the new dict_2.0. |
+ | :* hanzhenglong need to report the result everyday on cvss | ||
====tag LM==== | ====tag LM==== | ||
− | + | * summary done | |
− | * | + | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
* need to do | * need to do | ||
− | :* tag Probability should test add the weight(hanzhenglong) and handover to hanzhenglong ( | + | :* tag Probability should test add the weight(hanzhenglong) and handover to hanzhenglong (hold) |
− | :* make a summary about tag-lm and '''journal paper'''(wxx and yuanb)(''' | + | :* make a summary about tag-lm and '''journal paper'''(wxx and yuanb)('''this weeks'''). |
====RNN LM==== | ====RNN LM==== | ||
*rnn | *rnn | ||
:* test wer RNNLM on Chinese data from jietong-data('''this week''') | :* test wer RNNLM on Chinese data from jietong-data('''this week''') | ||
− | + | :* generate the ngram model from rnnlm and test the ppl with different size txt.[http://cslt.riit.tsinghua.edu.cn/mediawiki/index.php/Jt-chinese#sampling_data_from_rnnlm] | |
− | :* generate the ngram model from rnnlm and test the ppl with different size txt. | + | |
*lstm+rnn | *lstm+rnn | ||
− | :* check the lstm-rnnlm code about how to Initialize and update learning rate. | + | :* check the lstm-rnnlm code about how to Initialize and update learning rate.(hold) |
===Word2Vector=== | ===Word2Vector=== | ||
第261行: | 第185行: | ||
====Knowledge vector==== | ====Knowledge vector==== | ||
* Knowledge vector started | * Knowledge vector started | ||
− | :* | + | :* generate the structured data from wiki |
====Character to wordr==== | ====Character to wordr==== | ||
* Character to word conversion(hold) | * Character to word conversion(hold) | ||
第273行: | 第197行: | ||
===QA=== | ===QA=== | ||
− | deatil: | + | deatil: |
====Spell mistake==== | ====Spell mistake==== | ||
* retrain the ngram model('''caoli''') | * retrain the ngram model('''caoli''') | ||
第281行: | 第205行: | ||
:* using MERT-4 method to get good value of multi-feature.like IDF,NER,baidu_weight,keyword etc.('''liurong this month''') | :* using MERT-4 method to get good value of multi-feature.like IDF,NER,baidu_weight,keyword etc.('''liurong this month''') | ||
====Multi-Scene Recognition==== | ====Multi-Scene Recognition==== | ||
− | * | + | * done |
====XiaoI framework==== | ====XiaoI framework==== | ||
* give a report about xiaoI framework | * give a report about xiaoI framework | ||
* new inter will install SEMPRE | * new inter will install SEMPRE | ||
====patent==== | ====patent==== | ||
− | * | + | * done |
2014年12月1日 (一) 07:01的版本
目录
Speech Processing
AM development
Environment
- Already buy 3 760GPU
- grid-9 760GPU crashed again;
- Change 760gpu card of grid-12 and grid-14
Sparse DNN
- Performance improvement found when pruned slightly
- need retraining for unpruned one; training loss
- details at http://liuc.cslt.org/pages/sparse.html
RNN AM
- Initial nnet seems not very well, need to be pre-trained or test lower learn-rate.
- For AURORA 4 1h/epoch, model train done.
- Using AURORA 4 short-sentence with a smaller number of targets.(+)
- Adjusting the learning rate.(+)
- Trying toolkit of Microsoft.(+)
- details at http://liuc.cslt.org/pages/rnn.html
A new nnet training scheduler
- Initial code done. No better than original one considering of taking much more iterations.
- details at http://liuc.cslt.org/pages/nnet-sched.html
Drop out & Rectification & convolutive network
- Drop out
- AURORA4 dataset
- Use different proportion of noise data to investigate the effect of xEnt and mpe and dropout
- Problem 1) The effect of dropout in different noise proportion;
- Use different proportion of noise data to investigate the effect of xEnt and mpe and dropout
2) The effect of MPE in different noise proportion; 3) The effect of MPE+dropout in different noise proportion.
- Find and test unknown noise test-data.(++)
- Have done the droptout on normal trained XEnt NNET , eg wsj(learn-rate:1e-4/1e-5). Seems small learn-rate get the balance of accuracy and train-time.
- Debug the low cv frame-accuracy
- MaxOut
- 6min/epoch
1) AURORA4 -15h NOTE: gs==groupsize
- pretraining based maxout
- Select units in Groupsize interval, but need low learn-rate
- Force accept the first iteration. Jump out from the local-minimum
- pretraining based maxout
- P-norm
--------------------------------------------------------------------------------------------------------- model/testcase(WER) | test_clean_wv1 | test_airport_wv1 | test_babble_wv1 | test_car_wv1 --------------------------------------------------------------------------------------------------------- nnet_std-baseline | 6.04 | 29.91 | 27.76 | 16.37 --------------------------------------------------------------------------------------------------------- lr0.008-1e-7_gs6_p2 | 6.17 | 27.51 | 24.98 | 15.40 --------------------------------------------------------------------------------------------------------- lr0.008-1e-7_gs10_p2 | 6.40 | 28.18 | 26.60 | 15.82 --------------------------------------------------------------------------------------------------------- lr0.008-1e-7_gs10_p3 | 6.45 | 28.73 | 30.01 | 20.24 --------------------------------------------------------------------------------------------------------- lr0.04-4e-3_gs6_p2 | 6.47 | 27.42 | 27.48 | 17.35 ---------------------------------------------------------------------------------------------------------
- Convolutive network (+)
- AURORA 4
:** 1) ----------------------------------------------------------------------------------------------------------------------- | wer | hid-layers | hid-dim | delta-order | splice | lda-dim | learn-rate | pooling | TBA ----------------------------------------------------------------------------------------------------------------------- cnn_std_baseline| 6.70 | 4 | 1200 | 0 | 4 | 198 | 0.008 | 3 |patch-dim1 7 ----------------------------------------------------------------------------------------------------------------------- cnn_std_1000_3 | 6.61 | 4 | 1000 | 0 | 4 | 198 | 0.008 | 3 |patch-dim1 7 ----------------------------------------------------------------------------------------------------------------------- cnn_std_1400_3 | 6.61 | 4 | 1400 | 0 | 4 | 198 | 0.008 | 3 |patch-dim1 7 ----------------------------------------------------------------------------------------------------------------------- cnn_std_1200_4 | 6.91 | 4 | 1200 | 0 | 4 | 198 | 0.008 | 4 |patch-dim1 6 ----------------------------------------------------------------------------------------------------------------------- cnn_std_1200_2 | - | 4 | 1200 | 0 | 4 | 198 | 0.008 | 2 |patch-dim1 8 ----------------------------------------------------------------------------------------------------------------------- cnn_std_1200_3 | 6.66 | 5 | 1200 | 0 | 4 | 198 | 0.008 | 3 |patch-dim1 7 ----------------------------------------------------------------------------------------------------------------------- :** 2) ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | %WER | Dnnhiddenlayers | hid-dim | pooling | CNN_unit |cnn_init_opts ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- cnn_nonlda_std | 5.73 | 4 | 1200 | 3 | |"--patch-dim1 8" input_dim ~ patch-dim1 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- cnn_nonlda_cnnunit_384 | 5.85 | 4 | 1200 | 3 | 384 |"--patch-dim1 8 --num-filters2 384" ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- cnn_nonlda_cnnunit_220 | ---------- | 4 | 1200 | 3 | 220 |"--patch-dim1 8 --num-filters2 220" ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
MSE
(1) AURORA4 (train_clean) drop-retention/testcase(WER) | test_clean_wv1 | test_airport_wv1 | test_babble_wv1 | test_car_wv1 --------------------------------------------------------------------------------------------------------- std-baseline_xent | 6.04 | 29.91 | 27.76 | 16.37 --------------------------------------------------------------------------------------------------------- std-baseline_mse | 6.05 | 31.30 | 30.03 | 15.77 ---------------------------------------------------------------------------------------------------------
DAE(Deep Atuo-Encode)
(1) train_clean drop-retention/testcase(WER)| test_clean_wv1 | test_airport_wv1 | test_babble_wv1 | test_car_wv1 --------------------------------------------------------------------------------------------------------- std-xEnt-sigmoid-baseline| 6.04 | 29.91 | 27.76 | 16.37 --------------------------------------------------------------------------------------------------------- std+dae_cmvn_noFT_2-1200 | 7.10 | 15.33 | 16.58 | 9.23 --------------------------------------------------------------------------------------------------------- std+dae_cmvn_splice5_2-100 | 8.19 | 15.21 | 15.25 | 9.31 ---------------------------------------------------------------------------------------------------------
Denoising & Farfield ASR
- ICASSP paper submitted.
- HOLD
VAD
- Frame energy feature extraction, done
- Harmonics and Teager energy features being investigation (+)
- Previous results to be organized for a paper
- MPE model VAD test
Speech rate training
- Data ready on tencent set; some errors on speech rate dependent model
- Retrain new model(+)
Scoring
- Timber Comparison done.
- harmonics based timber comparison: frequency based feature is better
- GMM based timber comparison is done. Similar to speaker recognition
- TODO: Code checkin and technique report
Confidence
- Reproduce the experiments on fisher dataset.
- Use the fisher DNN model to decode all-wsj dataset
- preparing scoring for puqiang data
Speaker ID
- Preparing GMM-based server.
- EER ~ 4% (GMM-based system)--Text independent
- EER ~ 6%(1s) / 0.5%(5s) (GMM-based system)--Text dependent
- test different number of components; fast i-vector computing
Language ID
- GMM-based language is ready.
- Delivered to Jietong
- Prepare the test-case
Voice Conversion
- Yiye is reading materials
Text Processing
LM development
Domain specific LM
- domain lm
- embedded language model done
- train some more LMs with Zhenlong (dianzishu sogou bbs chosen),put result on cvss.
- small count done and ready to merge it.
- new dict.
- dongxu help hanzhenglong to set up the new dict_2.0.
- hanzhenglong need to report the result everyday on cvss
tag LM
- summary done
- need to do
- tag Probability should test add the weight(hanzhenglong) and handover to hanzhenglong (hold)
- make a summary about tag-lm and journal paper(wxx and yuanb)(this weeks).
RNN LM
- rnn
- test wer RNNLM on Chinese data from jietong-data(this week)
- generate the ngram model from rnnlm and test the ppl with different size txt.[1]
- lstm+rnn
- check the lstm-rnnlm code about how to Initialize and update learning rate.(hold)
Word2Vector
W2V based doc classification
- Initial results variable Bayesian GMM obtained. Performance is not as good as the conventional GMM.(hold)
- Non-linear inter-language transform: English-Spanish-Czch: wv model training done, transform model on investigation
Knowledge vector
- Knowledge vector started
- generate the structured data from wiki
Character to wordr
- Character to word conversion(hold)
- prepare the task: word similarity
- prepare the dict.
Translation
- v5.0 demo released
- cut the dict and use new segment-tool
QA
deatil:
Spell mistake
- retrain the ngram model(caoli)
improve fuzzy match
- add Synonyms similarity using MERT-4 method(hold)
improve lucene search
- using MERT-4 method to get good value of multi-feature.like IDF,NER,baidu_weight,keyword etc.(liurong this month)
Multi-Scene Recognition
- done
XiaoI framework
- give a report about xiaoI framework
- new inter will install SEMPRE
patent
- done