“2014-11-10”版本间的差异
来自cslt Wiki
(以“==Text Processing== ===LM development=== ====Domain specific LM==== * domain lm :* weibo lm with pruning 0 10 10 20 20 testing done. weibo lm with pruning 0 10 8 8...”为内容创建页面) |
|||
(3位用户的16个中间修订版本未显示) | |||
第1行: | 第1行: | ||
+ | ==Speech Processing == | ||
+ | === AM development === | ||
+ | |||
+ | ==== Environment ==== | ||
+ | * Already buy 3 760GPU | ||
+ | * grid-9 760GPU crashed again | ||
+ | |||
+ | ==== Sparse DNN ==== | ||
+ | * Performance improvement found when pruned slightly | ||
+ | * The result of AURORA 4 will be available soon. | ||
+ | * details at http://liuc.cslt.org/pages/sparse.html | ||
+ | |||
+ | ==== RNN AM==== | ||
+ | * Initial nnet seems not very well, need to be pre-trained or test lower learn-rate. | ||
+ | * For AURORA 4 1h/epoch, model train done. | ||
+ | * Using AURORA 4 short-sentence with a smaller number of targets.(+) | ||
+ | * Adjusting the learning rate.(+) | ||
+ | * Trying toolkit of Microsoft.(+) | ||
+ | * details at http://liuc.cslt.org/pages/rnn.html | ||
+ | |||
+ | ==== A new nnet training scheduler ==== | ||
+ | * Initial code done. No better than original one considering of taking much more iterations. | ||
+ | * details at http://liuc.cslt.org/pages/nnet-sched.html | ||
+ | |||
+ | ====Noise training==== | ||
+ | * Paper has been submitted. | ||
+ | |||
+ | ====Drop out & Rectification & convolutive network==== | ||
+ | |||
+ | * Drop out | ||
+ | :* dataset:wsj, testset:eval92 | ||
+ | std | dropout0.4 | dropout0.5 | dropout0.6 | dropout0.7 | dropout0.7_iter7(maxTr-Acc) | dropout0.8 | dropout0.8_iter7(maxTr-Acc) | ||
+ | ------------------------------------------------------------------------------------------------------------------------------------ | ||
+ | 4.5 | 5.39 | 4.80 | 4.75 | 4.36 | 4.39 | 4.55 | 4.71 | ||
+ | :** Frame-accuarcy seems not consistent with WER. Using the train-data as cv, verify the learning ability of the model. | ||
+ | Seems in one nnet model the train top frame accuracy is not consistent with the WER. | ||
+ | :** Decode test_clean_wv1 dataset. | ||
+ | |||
+ | :* AURORA4 dataset | ||
+ | |||
+ | (1) Train: train_nosiy | ||
+ | drop-retention/testcase(WER) | test_clean_wv1 | test_airport_wv1 | test_babble_wv1 | test_car_wv1 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | std-baseline | 9.60 | 11.41 | 11.63 | 8.64 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | dp-0.3 | 12.91 | 16.55 | 15.37 | 12.60 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | dp-0.4 | 11.48 | 14.43 | 13.23 | 11.04 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | dp-0.5 | 10.53 | 13.00 | 12.89 | 10.24 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | dp-0.6 | 10.02 | 12.32 | 11.81 | 9.29 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | dp-0.7 | 9.65 | 12.01 | 12.09 | 8.89 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | dp-0.8 | 9.79 | 12.01 | 11.77 | 8.91 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | dp-1.0 | 9.94 | 11.33 | 12.05 | 8.32 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | baseline_dp0.4_lr0.008 | 9.52 | 12.01 | 11.75 | 9.44 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | baseline_dp0.4_lr0.0001 | 9.92 | 14.22 | 13.59 | 10.24 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | baseline_dp0.4_lr0.00001 | 9.06 | 13.27 | 13.14 | 9.33 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | baseline_dp0.8_lr0.008 | 9.16 | 11.23 | 11.42 | 8.49 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | baseline_dp0.8_lr0.0001 | 9.22 | 11.52 | 11.77 | 8.82 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | baseline_dp0.8_lr0.00001 | 9.12 | 11.27 | 11.65 | 8.68 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | dp-0.4_follow-std-lr | 11.33 | 14.60 | 13.50 | 10.95 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | dp-0.8_follow-std-lr | 9.77 | 12.01 | 11.79 | 8.93 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | dp-0.4_4-2048 | 11.69 | 16.13 | 14.24 | 11.98 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | dp-0.8_4-2048 | 9.46 | 11.60 | 11.98 | 8.78 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | |||
+ | :** Test with AURORA4 of 7000 (clean + noisy). | ||
+ | :** Follow the standard DNN training learn-rate to avoid the different learn-rate changing time of various DNN training. Similar performance is obtained. | ||
+ | :** Find and test unknown noise test-data.(+) | ||
+ | :** Have done the droptout on normal trained XEnt NNET , eg wsj(learn-rate:1e-4/1e-5). Seems small learn-rate get the balance of accuracy and train-time. | ||
+ | :** Draft the dropout-DNN weight distribution. (++) | ||
+ | |||
+ | * Rectification | ||
+ | :* Combine drop out and rectifier.(+) | ||
+ | :* Change the learn-rate in the middle of the training, Modify the train_nnet.sh script(Liu Chao). | ||
+ | |||
+ | * MaxOut | ||
+ | :* 6min/epoch | ||
+ | 1) AURORA4 -15h | ||
+ | NOTE: gs==groupsize | ||
+ | (1) Train: train_clean | ||
+ | model/testcase(WER) | test_clean_wv1 | test_airport_wv1 | test_babble_wv1 | test_car_wv1 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | std-baseline | 6.04 | 29.91 | 27.76 | 16.37 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | lr0.008_gs6 | - | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | lr0.008_gs10 | - | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | lr0.008_gs20 | - | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | lr0.008_l1-0.01 | - | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | lr0.008_l1-0.001 | - | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | lr0.008_l1-0.0001 | - | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | lr0.008_l1-0.000001 | - | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | lr0.008_l2-0.01 | - | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | lr0.006_gs10 | - | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | lr0.004_gs10 | - | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | lr0.002_gs10 | 6.21 | 28.48 | 27.30 | 16.37 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | lr0.001_gs1 | - | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | lr0.001_gs2 | - | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | lr0.001_gs4 | - | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | lr0.001_gs6 | 6.04 | 25.17 | 24.31 | 14.19 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | lr0.001_gs8 | 5.85 | 25.72 | 24.35 | 14.28 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | lr0.001_gs10 | 6.23 | 27.04 | 25.51 | 14.22 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | lr0.001_gs15 | 5.94 | 30.10 | 27.53 | 19.00 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | lr0.001_gs20 | 6.32 | 28.10 | 26.47 | 16.98 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | |||
+ | * P-norm | ||
+ | |||
+ | * Convolutive network (+) | ||
+ | :* AURORA 4 | ||
+ | | wer | hid-layers | hid-dim | delta-order | splice | lda-dim | learn-rate | pooling | TBA | ||
+ | ----------------------------------------------------------------------------------------------------------------------- | ||
+ | cnn_std_baseline| 6.70 | 4 | 1200 | 0 | 4 | 198 | 0.008 | 3 |patch-dim1 7 | ||
+ | ----------------------------------------------------------------------------------------------------------------------- | ||
+ | cnn_std_1000_3 | 6.61 | 4 | 1000 | 0 | 4 | 198 | 0.008 | 3 |patch-dim1 7 | ||
+ | ----------------------------------------------------------------------------------------------------------------------- | ||
+ | cnn_std_1400_3 | 6.61 | 4 | 1400 | 0 | 4 | 198 | 0.008 | 3 |patch-dim1 7 | ||
+ | ----------------------------------------------------------------------------------------------------------------------- | ||
+ | cnn_std_1200_4 | 6.91 | 4 | 1200 | 0 | 4 | 198 | 0.008 | 4 |patch-dim1 6 | ||
+ | ----------------------------------------------------------------------------------------------------------------------- | ||
+ | cnn_std_1200_2 | - | 4 | 1200 | 0 | 4 | 198 | 0.008 | 2 |patch-dim1 8 | ||
+ | ----------------------------------------------------------------------------------------------------------------------- | ||
+ | cnn_std_1200_3 | 6.66 | 5 | 1200 | 0 | 4 | 198 | 0.008 | 3 |patch-dim1 7 | ||
+ | ----------------------------------------------------------------------------------------------------------------------- | ||
+ | |||
+ | :* READ paper | ||
+ | |||
+ | ====Denoising & Farfield ASR==== | ||
+ | * ICASSP paper submitted. | ||
+ | * HOLD | ||
+ | |||
+ | ====VAD==== | ||
+ | * Frame energy feature extraction, done | ||
+ | * Harmonics and Teager energy features being investigation | ||
+ | * Previous results to be organized for a paper | ||
+ | |||
+ | ====Speech rate training==== | ||
+ | * 100h random select from 1000h tec dataset | ||
+ | :* baseline and ROS NNet train done, will decoding soon | ||
+ | * Seems ROS model is superior to the normal one with faster speech | ||
+ | |||
+ | ==== low resource language AM training ==== | ||
+ | * HOLD | ||
+ | * Uyghur language model has been released to JT. Done. | ||
+ | |||
+ | ====Scoring==== | ||
+ | * Timber Comparison on testing | ||
+ | |||
+ | ====Confidence==== | ||
+ | * Reproduce the experiments on fisher dataset. | ||
+ | * Use the fisher DNN model to decode all-wsj dataset | ||
+ | * preparing scoring for puqiang data | ||
+ | |||
+ | ===Speaker ID=== | ||
+ | * Preparing GMM-based server. | ||
+ | * EER ~ 11.2% (GMM-based system) | ||
+ | * test different number of components; fast i-vector computing | ||
+ | |||
+ | ===Language ID=== | ||
+ | * GMM-based language is ready. | ||
+ | * Delivered to Jietong | ||
+ | |||
+ | ===Emotion detection=== | ||
+ | |||
+ | * Sinovoice is implementing the server | ||
+ | |||
+ | |||
==Text Processing== | ==Text Processing== | ||
===LM development=== | ===LM development=== | ||
第4行: | 第203行: | ||
====Domain specific LM==== | ====Domain specific LM==== | ||
* domain lm | * domain lm | ||
− | + | :* merger weibo、baiduhi and baiduzhidao lm and test ('''need result''') | |
− | :* merger weibo、baiduhi and baiduzhidao lm and test (''' | + | |
:* confirm the size of alpa with xiaomin for business application.(like e-13) | :* confirm the size of alpa with xiaomin for business application.(like e-13) | ||
:* get the general test data from miaomin .this test set may get from online. | :* get the general test data from miaomin .this test set may get from online. | ||
+ | :* trained a new lm: mobile | ||
+ | :* find the optimal lambda for interpolating following LMs: baidu_hi, mobile, sichuanmobile | ||
+ | :* train some more LMs with Zhenlong | ||
+ | :* keep on training sogou2T lm | ||
+ | |||
* new dict. | * new dict. | ||
第21行: | 第224行: | ||
* set new test | * set new test | ||
− | :* | + | :* |
+ | {| border="2px" | ||
+ | |+ no "北京" in corpus with tag-lm | ||
+ | |- | ||
+ | ! method !!baeline !! weight0.1 !! weight0.5 !! weight1 !! weight2 !! weight3 | ||
+ | |- | ||
+ | ! wer | ||
+ | | 56.58 || 69.49 || 62.23 || 58.03 || 56.90 || - | ||
+ | |- | ||
+ | !"北京" | ||
+ | |6/10||4/10||4/10||2/10||1/10||0 | ||
+ | |- | ||
+ | ! detail | ||
+ | |288 ins, 5075 del, 3178 sub||196 ins, 6016 del, 4278 sub||190 ins, 5870 del, 3334 sub||243 ins, 5294 del, 3223 sub||344 ins, 4558 del, 3687 sub||- | ||
+ | |- | ||
+ | |} | ||
+ | * mix seed lm with big lm, test address-tag on big lm | ||
====RNN LM==== | ====RNN LM==== | ||
第58行: | 第277行: | ||
===QA=== | ===QA=== | ||
+ | deatil:[http://cslt.riit.tsinghua.edu.cn/mediawiki/index.php/Hulan-2014-11-06] | ||
+ | ====Spell mistake==== | ||
+ | :* retrain the ngram model('''caoli''') | ||
+ | :* prepare the test and development set('''caoli''') | ||
+ | |||
+ | ====improve fuzzy match==== | ||
+ | * add Synonyms similarity using MERT-4 method | ||
+ | |||
+ | ====improve lucene search==== | ||
+ | * our vsm method | ||
+ | {| border="2px" | ||
+ | |+ different result in lucene | ||
+ | |- | ||
+ | ! method !!lucene !! vsm_idf(haiguan) !! VSM_idf(baidu) !! vsm_idf(tain) !! vsm_idf(calculate) | ||
+ | |- | ||
+ | ! Accary | ||
+ | | 0.6628 || 0.6228 || 0.6197 || 0.5827 || 0.5426 | ||
+ | |- | ||
+ | |} | ||
+ | * lucene top | ||
+ | :* top10(82.95%),top20(86.34),top50(90.23%),top100(94.11%),top200(96.18%),top1000(97.31%),top2000(97.87%),top5000(98.75%),top10000(99.06) | ||
+ | :* test the result of top(100,200,1000) in full qa(lucene+fuzzymatch)('''caoli''') | ||
+ | |||
+ | * lucene Optimization(liurong) | ||
+ | :* rewrite the method to select the 50 standard question not same template.(liurong) | ||
+ | :* check the word segment for template.(liurong) | ||
+ | :* boost the query keyword using IDF | ||
+ | {| border="2px" | ||
+ | |+ boost keyword in lucene | ||
+ | |- | ||
+ | ! method !!Default !! idf_train !! idf_train_norm!! idf_baidu !! idf_baidu_norm | ||
+ | |- | ||
+ | ! Accary | ||
+ | | 0.66228 || 0.651629 ||0.57644|| 0.647869|| 0.65288 | ||
+ | |- | ||
+ | |} | ||
+ | :* using MERT-4 method to get good value of multi-feature.like IDF,NER,baidu_weight,keyword etc.('''liurong this month''') | ||
− | + | ====Multi-Scene Recognition==== | |
− | + | * add the triples search to QA engine | |
− | :* | + | :* discuss the detail and give a report.('''liurong''') |
− | + | * demo ('''liurong two week''') | |
− | + | . | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
* new inter will install SEMPRE | * new inter will install SEMPRE |
2014年11月11日 (二) 08:06的最后版本
目录
Speech Processing
AM development
Environment
- Already buy 3 760GPU
- grid-9 760GPU crashed again
Sparse DNN
- Performance improvement found when pruned slightly
- The result of AURORA 4 will be available soon.
- details at http://liuc.cslt.org/pages/sparse.html
RNN AM
- Initial nnet seems not very well, need to be pre-trained or test lower learn-rate.
- For AURORA 4 1h/epoch, model train done.
- Using AURORA 4 short-sentence with a smaller number of targets.(+)
- Adjusting the learning rate.(+)
- Trying toolkit of Microsoft.(+)
- details at http://liuc.cslt.org/pages/rnn.html
A new nnet training scheduler
- Initial code done. No better than original one considering of taking much more iterations.
- details at http://liuc.cslt.org/pages/nnet-sched.html
Noise training
- Paper has been submitted.
Drop out & Rectification & convolutive network
- Drop out
- dataset:wsj, testset:eval92
std | dropout0.4 | dropout0.5 | dropout0.6 | dropout0.7 | dropout0.7_iter7(maxTr-Acc) | dropout0.8 | dropout0.8_iter7(maxTr-Acc) ------------------------------------------------------------------------------------------------------------------------------------ 4.5 | 5.39 | 4.80 | 4.75 | 4.36 | 4.39 | 4.55 | 4.71
- Frame-accuarcy seems not consistent with WER. Using the train-data as cv, verify the learning ability of the model.
Seems in one nnet model the train top frame accuracy is not consistent with the WER.
- Decode test_clean_wv1 dataset.
- AURORA4 dataset
(1) Train: train_nosiy drop-retention/testcase(WER) | test_clean_wv1 | test_airport_wv1 | test_babble_wv1 | test_car_wv1 --------------------------------------------------------------------------------------------------------- std-baseline | 9.60 | 11.41 | 11.63 | 8.64 --------------------------------------------------------------------------------------------------------- dp-0.3 | 12.91 | 16.55 | 15.37 | 12.60 --------------------------------------------------------------------------------------------------------- dp-0.4 | 11.48 | 14.43 | 13.23 | 11.04 --------------------------------------------------------------------------------------------------------- dp-0.5 | 10.53 | 13.00 | 12.89 | 10.24 --------------------------------------------------------------------------------------------------------- dp-0.6 | 10.02 | 12.32 | 11.81 | 9.29 --------------------------------------------------------------------------------------------------------- dp-0.7 | 9.65 | 12.01 | 12.09 | 8.89 --------------------------------------------------------------------------------------------------------- dp-0.8 | 9.79 | 12.01 | 11.77 | 8.91 --------------------------------------------------------------------------------------------------------- dp-1.0 | 9.94 | 11.33 | 12.05 | 8.32 --------------------------------------------------------------------------------------------------------- baseline_dp0.4_lr0.008 | 9.52 | 12.01 | 11.75 | 9.44 --------------------------------------------------------------------------------------------------------- baseline_dp0.4_lr0.0001 | 9.92 | 14.22 | 13.59 | 10.24 --------------------------------------------------------------------------------------------------------- baseline_dp0.4_lr0.00001 | 9.06 | 13.27 | 13.14 | 9.33 --------------------------------------------------------------------------------------------------------- baseline_dp0.8_lr0.008 | 9.16 | 11.23 | 11.42 | 8.49 --------------------------------------------------------------------------------------------------------- baseline_dp0.8_lr0.0001 | 9.22 | 11.52 | 11.77 | 8.82 --------------------------------------------------------------------------------------------------------- baseline_dp0.8_lr0.00001 | 9.12 | 11.27 | 11.65 | 8.68 --------------------------------------------------------------------------------------------------------- dp-0.4_follow-std-lr | 11.33 | 14.60 | 13.50 | 10.95 --------------------------------------------------------------------------------------------------------- dp-0.8_follow-std-lr | 9.77 | 12.01 | 11.79 | 8.93 --------------------------------------------------------------------------------------------------------- dp-0.4_4-2048 | 11.69 | 16.13 | 14.24 | 11.98 --------------------------------------------------------------------------------------------------------- dp-0.8_4-2048 | 9.46 | 11.60 | 11.98 | 8.78 ---------------------------------------------------------------------------------------------------------
- Test with AURORA4 of 7000 (clean + noisy).
- Follow the standard DNN training learn-rate to avoid the different learn-rate changing time of various DNN training. Similar performance is obtained.
- Find and test unknown noise test-data.(+)
- Have done the droptout on normal trained XEnt NNET , eg wsj(learn-rate:1e-4/1e-5). Seems small learn-rate get the balance of accuracy and train-time.
- Draft the dropout-DNN weight distribution. (++)
- Rectification
- Combine drop out and rectifier.(+)
- Change the learn-rate in the middle of the training, Modify the train_nnet.sh script(Liu Chao).
- MaxOut
- 6min/epoch
1) AURORA4 -15h NOTE: gs==groupsize (1) Train: train_clean model/testcase(WER) | test_clean_wv1 | test_airport_wv1 | test_babble_wv1 | test_car_wv1 --------------------------------------------------------------------------------------------------------- std-baseline | 6.04 | 29.91 | 27.76 | 16.37 --------------------------------------------------------------------------------------------------------- lr0.008_gs6 | - --------------------------------------------------------------------------------------------------------- lr0.008_gs10 | - --------------------------------------------------------------------------------------------------------- lr0.008_gs20 | - --------------------------------------------------------------------------------------------------------- lr0.008_l1-0.01 | - --------------------------------------------------------------------------------------------------------- lr0.008_l1-0.001 | - --------------------------------------------------------------------------------------------------------- lr0.008_l1-0.0001 | - --------------------------------------------------------------------------------------------------------- lr0.008_l1-0.000001 | - --------------------------------------------------------------------------------------------------------- lr0.008_l2-0.01 | - --------------------------------------------------------------------------------------------------------- lr0.006_gs10 | - --------------------------------------------------------------------------------------------------------- lr0.004_gs10 | - --------------------------------------------------------------------------------------------------------- lr0.002_gs10 | 6.21 | 28.48 | 27.30 | 16.37 --------------------------------------------------------------------------------------------------------- lr0.001_gs1 | - --------------------------------------------------------------------------------------------------------- lr0.001_gs2 | - --------------------------------------------------------------------------------------------------------- lr0.001_gs4 | - --------------------------------------------------------------------------------------------------------- lr0.001_gs6 | 6.04 | 25.17 | 24.31 | 14.19 --------------------------------------------------------------------------------------------------------- lr0.001_gs8 | 5.85 | 25.72 | 24.35 | 14.28 --------------------------------------------------------------------------------------------------------- lr0.001_gs10 | 6.23 | 27.04 | 25.51 | 14.22 --------------------------------------------------------------------------------------------------------- lr0.001_gs15 | 5.94 | 30.10 | 27.53 | 19.00 --------------------------------------------------------------------------------------------------------- lr0.001_gs20 | 6.32 | 28.10 | 26.47 | 16.98 ---------------------------------------------------------------------------------------------------------
- P-norm
- Convolutive network (+)
- AURORA 4
| wer | hid-layers | hid-dim | delta-order | splice | lda-dim | learn-rate | pooling | TBA ----------------------------------------------------------------------------------------------------------------------- cnn_std_baseline| 6.70 | 4 | 1200 | 0 | 4 | 198 | 0.008 | 3 |patch-dim1 7 ----------------------------------------------------------------------------------------------------------------------- cnn_std_1000_3 | 6.61 | 4 | 1000 | 0 | 4 | 198 | 0.008 | 3 |patch-dim1 7 ----------------------------------------------------------------------------------------------------------------------- cnn_std_1400_3 | 6.61 | 4 | 1400 | 0 | 4 | 198 | 0.008 | 3 |patch-dim1 7 ----------------------------------------------------------------------------------------------------------------------- cnn_std_1200_4 | 6.91 | 4 | 1200 | 0 | 4 | 198 | 0.008 | 4 |patch-dim1 6 ----------------------------------------------------------------------------------------------------------------------- cnn_std_1200_2 | - | 4 | 1200 | 0 | 4 | 198 | 0.008 | 2 |patch-dim1 8 ----------------------------------------------------------------------------------------------------------------------- cnn_std_1200_3 | 6.66 | 5 | 1200 | 0 | 4 | 198 | 0.008 | 3 |patch-dim1 7 -----------------------------------------------------------------------------------------------------------------------
- READ paper
Denoising & Farfield ASR
- ICASSP paper submitted.
- HOLD
VAD
- Frame energy feature extraction, done
- Harmonics and Teager energy features being investigation
- Previous results to be organized for a paper
Speech rate training
- 100h random select from 1000h tec dataset
- baseline and ROS NNet train done, will decoding soon
- Seems ROS model is superior to the normal one with faster speech
low resource language AM training
- HOLD
- Uyghur language model has been released to JT. Done.
Scoring
- Timber Comparison on testing
Confidence
- Reproduce the experiments on fisher dataset.
- Use the fisher DNN model to decode all-wsj dataset
- preparing scoring for puqiang data
Speaker ID
- Preparing GMM-based server.
- EER ~ 11.2% (GMM-based system)
- test different number of components; fast i-vector computing
Language ID
- GMM-based language is ready.
- Delivered to Jietong
Emotion detection
- Sinovoice is implementing the server
Text Processing
LM development
Domain specific LM
- domain lm
- merger weibo、baiduhi and baiduzhidao lm and test (need result)
- confirm the size of alpa with xiaomin for business application.(like e-13)
- get the general test data from miaomin .this test set may get from online.
- trained a new lm: mobile
- find the optimal lambda for interpolating following LMs: baidu_hi, mobile, sichuanmobile
- train some more LMs with Zhenlong
- keep on training sogou2T lm
- new dict.
- Tested the earlier vocabulary on 6000.txt with ppl.
old150K new166K new150K baiduzhidao 394 369 333 baiduhi 217 190 188
- Built new 100K,150K,200K vocabulary
- Had fixed some bugs in sogou dict spider.
- new toolkit:find method to update the new dict. can get new wordlist from sougou and get word information from baidu.(two week)
tag LM
- set new test
method | baeline | weight0.1 | weight0.5 | weight1 | weight2 | weight3 |
---|---|---|---|---|---|---|
wer | 56.58 | 69.49 | 62.23 | 58.03 | 56.90 | - |
"北京" | 6/10 | 4/10 | 4/10 | 2/10 | 1/10 | 0 |
detail | 288 ins, 5075 del, 3178 sub | 196 ins, 6016 del, 4278 sub | 190 ins, 5870 del, 3334 sub | 243 ins, 5294 del, 3223 sub | 344 ins, 4558 del, 3687 sub | - |
- mix seed lm with big lm, test address-tag on big lm
RNN LM
- rnn
- RNNLM=>ALPA make a report
- test RNNLM on Chinese data from jietong-data
- check the rnnlm code.
- lstm+rnn
- check the lstm-rnnlm code
Word2Vector
W2V based doc classification
- Initial results variable Bayesian GMM obtained. Performance is not as good as the conventional GMM.
- Non-linear inter-language transform: English-Spanish-Czch: wv model training done, transform model on investigation
- SSA-based local linear mapping still on running.
- k-means classes change to 2.
- Knowledge vector started
- format the data
- yuanbin will continue this work with help of xingchao.
- Character to word conversion
- prepare the task: word similarity
- prepare the dict.
- Google word vector train
- some ideal will discuss on weekly report.
Translation
- v4.0 demo released
- cut the dict and use new segment-tool
QA
deatil:[1]
Spell mistake
- retrain the ngram model(caoli)
- prepare the test and development set(caoli)
improve fuzzy match
- add Synonyms similarity using MERT-4 method
improve lucene search
- our vsm method
method | lucene | vsm_idf(haiguan) | VSM_idf(baidu) | vsm_idf(tain) | vsm_idf(calculate) |
---|---|---|---|---|---|
Accary | 0.6628 | 0.6228 | 0.6197 | 0.5827 | 0.5426 |
- lucene top
- top10(82.95%),top20(86.34),top50(90.23%),top100(94.11%),top200(96.18%),top1000(97.31%),top2000(97.87%),top5000(98.75%),top10000(99.06)
- test the result of top(100,200,1000) in full qa(lucene+fuzzymatch)(caoli)
- lucene Optimization(liurong)
- rewrite the method to select the 50 standard question not same template.(liurong)
- check the word segment for template.(liurong)
- boost the query keyword using IDF
method | Default | idf_train | idf_train_norm | idf_baidu | idf_baidu_norm |
---|---|---|---|---|---|
Accary | 0.66228 | 0.651629 | 0.57644 | 0.647869 | 0.65288 |
- using MERT-4 method to get good value of multi-feature.like IDF,NER,baidu_weight,keyword etc.(liurong this month)
Multi-Scene Recognition
- add the triples search to QA engine
- discuss the detail and give a report.(liurong)
- demo (liurong two week)
.
- new inter will install SEMPRE