“2014-11-03”版本间的差异
来自cslt Wiki
(→RNN LM) |
|||
(2位用户的6个中间修订版本未显示) | |||
第2行: | 第2行: | ||
=== AM development === | === AM development === | ||
− | ==== | + | ==== Environment ==== |
− | * | + | * buy two 760-GPUs. |
− | + | * sale the old GPU. | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
==== Sparse DNN ==== | ==== Sparse DNN ==== | ||
* Performance improvement found when pruned slightly | * Performance improvement found when pruned slightly | ||
* Experiments show that | * Experiments show that | ||
− | * | + | * Waiting for result of AURORA 4 |
* HOLD | * HOLD | ||
==== RNN AM==== | ==== RNN AM==== | ||
* Initial nnet seems no very well, need to be pre-trained or test lower learn-rate. | * Initial nnet seems no very well, need to be pre-trained or test lower learn-rate. | ||
− | * For | + | * For AURORA 4 1h/epoch, more than 200 epochs have done. |
* Using AURORA 4 short-sentence with a smaller number of targets. | * Using AURORA 4 short-sentence with a smaller number of targets. | ||
+ | * Adjusting the learning rate. | ||
+ | * Trying toolkit of Microsoft. | ||
====Noise training==== | ====Noise training==== | ||
− | + | * Paper has been submitted. | |
− | + | ||
− | * Paper | + | |
====Drop out & Rectification & convolutive network==== | ====Drop out & Rectification & convolutive network==== | ||
第40行: | 第30行: | ||
4.5 | 5.39 | 4.80 | 4.75 | 4.36 | 4.55 | 4.5 | 5.39 | 4.80 | 4.75 | 4.36 | 4.55 | ||
:** Frame-accuarcy seems not consistent with WER. | :** Frame-accuarcy seems not consistent with WER. | ||
− | :** Using the train-data as cv, verify the learning ability of the model. | + | :** Using the train-data as cv, verify the learning ability of the model. |
+ | :** Decode test_clean_wv1 dataset. | ||
:* AURORA4 dataset | :* AURORA4 dataset | ||
− | (1 | + | |
− | + | (1) Train: train_nosiy | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
drop-retention/testcase(WER) | test_clean_wv1 | test_airport_wv1 | test_babble_wv1 | test_car_wv1 | drop-retention/testcase(WER) | test_clean_wv1 | test_airport_wv1 | test_babble_wv1 | test_car_wv1 | ||
--------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------- | ||
第80行: | 第54行: | ||
dp-1.0 | 9.94 | 11.33 | 12.05 | 8.32 | dp-1.0 | 9.94 | 11.33 | 12.05 | 8.32 | ||
--------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------- | ||
− | :** | + | baseline_dp0.4_lr0.008 | 9.52 | 12.01 | 11.75 | 9.44 |
− | :** Follow the standard | + | --------------------------------------------------------------------------------------------------------- |
− | :** | + | baseline_dp0.4_lr0.0001 | 9.92 | 14.22 | 13.59 | 10.24 |
− | :** | + | --------------------------------------------------------------------------------------------------------- |
+ | baseline_dp0.4_lr0.00001 | 9.06 | 13.27 | 13.14 | 9.33 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | baseline_dp0.8_lr0.008 | 9.16 | 11.23 | 11.42 | 8.49 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | baseline_dp0.8_lr0.0001 | 9.22 | 11.52 | 11.77 | 8.82 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | baseline_dp0.8_lr0.00001 | 9.12 | 11.27 | 11.65 | 8.68 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | dp-0.4_follow-std-lr | 11.33 | 14.60 | 13.50 | 10.95 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | dp-0.8_follow-std-lr | 9.77 | 12.01 | 11.79 | 8.93 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | dp-0.4_4-2048 | 11.69 | 16.13 | 14.24 | 11.98 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | dp-0.8_4-2048 | 9.46 | 11.60 | 11.98 | 8.78 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | |||
+ | :** Test with AURORA4 of 7000 (clean + noisy). | ||
+ | :** Follow the standard DNN training learn-rate to avoid the different learn-rate changing time of various DNN training. Similar performance is obtained. | ||
+ | :** Find and test unknown noise test-data.(+) | ||
+ | :** Have done the droptout on normal trained XEnt NNET , eg wsj(learn-rate:1e-4/1e-5). Seems small learn-rate get the balance of accuracy and train-time. | ||
:** Draft the dropout-DNN weight distribution. (++) | :** Draft the dropout-DNN weight distribution. (++) | ||
* Rectification | * Rectification | ||
− | :* | + | :* 1) AURORA 4 -15h |
− | + | ||
(1) Train: train_clean | (1) Train: train_clean | ||
learn-rate/testcase(WER) | test_clean_wv1 | test_airport_wv1 | test_babble_wv1 | test_car_wv1 | learn-rate/testcase(WER) | test_clean_wv1 | test_airport_wv1 | test_babble_wv1 | test_car_wv1 | ||
--------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------- | ||
std-baseline | 6.04 | 29.91 | 27.76 | 16.37 | std-baseline | 6.04 | 29.91 | 27.76 | 16.37 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | lr0.00001 | 8.30 | 43.85 | 46.42 | 29.80 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | lr0.0001 | 6.57 | 31.11 | 30.65 | 19.65 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | lr0.0006 | 6.19 | 29.23 | 28.45 | 17.31 | ||
+ | --------------------------------------------------------------------------------------------------------- | ||
+ | lr0.0008 | 6.17 | 28.10 | 27.46 | 14.97 | ||
--------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------- | ||
lr0.001 | 6.28 | 30.01 | 30.26 | 20.81 | lr0.001 | 6.28 | 30.01 | 30.26 | 20.81 | ||
第110行: | 第112行: | ||
lr-0.001_l1-0.000001 | 6.30 | 31.91 | 29.23 | 21.52 | lr-0.001_l1-0.000001 | 6.30 | 31.91 | 29.23 | 21.52 | ||
--------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------- | ||
+ | |||
+ | :* Combine drop out and rectifier. | ||
:* Change the learn-rate in the middle of the training, Modify the train_nnet.sh script(Liu Chao). | :* Change the learn-rate in the middle of the training, Modify the train_nnet.sh script(Liu Chao). | ||
− | |||
− | * MaxOut ( | + | * MaxOut (+) |
+ | :* 6min/epoch, can't use high lr. | ||
+ | |||
+ | * P-norm | ||
* Convolutive network (+) | * Convolutive network (+) | ||
− | :* | + | ORG_DNN.4-1200 WER: 4.50 |
+ | |||
+ | | WER | hid-layers | hid-dim | delta-order | splice | lda-dim | learn-rate | cnn_init_opts | ||
+ | ------------------------------------------------------------------------------------------------------------------ | ||
+ | cnn_std_baseline | 4.86 | 5 | 1200 | 0 | 5 | 198 | 0.008 | "--patch-dim1 7" | ||
+ | |||
+ | :* AURORA 4 | ||
+ | :* READ paper | ||
====Denoising & Farfield ASR==== | ====Denoising & Farfield ASR==== | ||
第124行: | 第137行: | ||
====VAD==== | ====VAD==== | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
====Speech rate training==== | ====Speech rate training==== | ||
* Seems ROS model is superior to the normal one with faster speech | * Seems ROS model is superior to the normal one with faster speech | ||
* Suggest to extract speech data of different ROS, construct a new test set(+) | * Suggest to extract speech data of different ROS, construct a new test set(+) | ||
− | * Tencent training data | + | * Tencent training data with 100h |
==== low resource language AM training ==== | ==== low resource language AM training ==== | ||
第150行: | 第155行: | ||
| 1 | 16.87 | | | | | 1 | 16.87 | | | | ||
| 0 | 16.88 | | | | | 0 | 16.88 | | | | ||
+ | |||
+ | mpe: | ||
+ | | Nnet-structure | WER | | ||
+ | | baseline | 16.12 | | ||
+ | | 4-0-1 | | | ||
+ | | 4-1-1 | 16.10 | | ||
+ | | 4-2-1 | 15.66 | | ||
+ | | 3-1-1 | 16.10 | | ||
+ | | 3-2-1 | 15.64 | | ||
+ | | 2-2-1 | 15.73 | | ||
+ | | 1-3-1 | 15.91 | | ||
+ | | 0-4-1 | | | ||
+ | |||
+ | |||
+ | remark: 4-0-1 means 4 hidden-layers from 6000h_CN, 0 hidden-layer from random generation, 1 output-layer. | ||
:** feature_transform = uyghur_transform + 6000_N*hidden-layers | :** feature_transform = uyghur_transform + 6000_N*hidden-layers | ||
nnet.init = random (4-N)*hidden-layers + output-layer | nnet.init = random (4-N)*hidden-layers + output-layer | ||
第172行: | 第192行: | ||
− | * sub word unit language model is ready. | + | * sub word unit language model is ready. Done. |
+ | |||
====Scoring==== | ====Scoring==== | ||
− | * | + | * Timber Comparison on testing |
− | + | ||
====Confidence==== | ====Confidence==== | ||
第186行: | 第206行: | ||
* EER ~ 11.2% (GMM-based system) | * EER ~ 11.2% (GMM-based system) | ||
* test different number of components; fast i-vector computing | * test different number of components; fast i-vector computing | ||
+ | |||
+ | ===Language ID=== | ||
+ | * GMM-based language is ready. | ||
+ | * Delivered to Jietong | ||
===Emotion detection=== | ===Emotion detection=== | ||
* Sinovoice is implementing the server | * Sinovoice is implementing the server | ||
− | |||
− | |||
==Text Processing== | ==Text Processing== | ||
第243行: | 第265行: | ||
===Translation=== | ===Translation=== | ||
− | * | + | * v4.0 demo released |
− | :* | + | :* cut the dict and use new segment-tool |
− | + | ||
− | + | ||
===QA=== | ===QA=== | ||
− | * | + | * lucene Optimization |
− | :* test the | + | :* rewrite the method to select the 50 standard question not same template.('''this week''') |
− | :* | + | :* test the boost keyword weight and extract the synonyms word.('''this week''') |
− | :* | + | :* check the word segment for template.('''this week''') |
+ | :* min-segment method improve the accuracy.(0.61->0.66) | ||
+ | :* check the query method for getting lucene information and to rewrite the score method like the idf value. | ||
+ | * test | ||
+ | :* test the different idf vale from baidu sougou in fuzzymatch.('''this week''') | ||
+ | :* need to check the other 10% error.('''this week''') | ||
* spell check | * spell check | ||
− | :* | + | :* simple demo done. |
− | + | ||
* new inter will install SEMPRE | * new inter will install SEMPRE |
2014年11月5日 (三) 08:35的最后版本
目录
Speech Processing
AM development
Environment
- buy two 760-GPUs.
- sale the old GPU.
Sparse DNN
- Performance improvement found when pruned slightly
- Experiments show that
- Waiting for result of AURORA 4
- HOLD
RNN AM
- Initial nnet seems no very well, need to be pre-trained or test lower learn-rate.
- For AURORA 4 1h/epoch, more than 200 epochs have done.
- Using AURORA 4 short-sentence with a smaller number of targets.
- Adjusting the learning rate.
- Trying toolkit of Microsoft.
Noise training
- Paper has been submitted.
Drop out & Rectification & convolutive network
- Drop out
- dataset:wsj, testset:eval92
std | dropout0.4 | dropout0.5 | dropout0.6 | dropout0.7 | dropout0.8 ------------------------------------------------------------------------- 4.5 | 5.39 | 4.80 | 4.75 | 4.36 | 4.55
- Frame-accuarcy seems not consistent with WER.
- Using the train-data as cv, verify the learning ability of the model.
- Decode test_clean_wv1 dataset.
- AURORA4 dataset
(1) Train: train_nosiy drop-retention/testcase(WER) | test_clean_wv1 | test_airport_wv1 | test_babble_wv1 | test_car_wv1 --------------------------------------------------------------------------------------------------------- std-baseline | 9.60 | 11.41 | 11.63 | 8.64 --------------------------------------------------------------------------------------------------------- dp-0.3 | 12.91 | 16.55 | 15.37 | 12.60 --------------------------------------------------------------------------------------------------------- dp-0.4 | 11.48 | 14.43 | 13.23 | 11.04 --------------------------------------------------------------------------------------------------------- dp-0.5 | 10.53 | 13.00 | 12.89 | 10.24 --------------------------------------------------------------------------------------------------------- dp-0.6 | 10.02 | 12.32 | 11.81 | 9.29 --------------------------------------------------------------------------------------------------------- dp-0.7 | 9.65 | 12.01 | 12.09 | 8.89 --------------------------------------------------------------------------------------------------------- dp-0.8 | 9.79 | 12.01 | 11.77 | 8.91 --------------------------------------------------------------------------------------------------------- dp-1.0 | 9.94 | 11.33 | 12.05 | 8.32 --------------------------------------------------------------------------------------------------------- baseline_dp0.4_lr0.008 | 9.52 | 12.01 | 11.75 | 9.44 --------------------------------------------------------------------------------------------------------- baseline_dp0.4_lr0.0001 | 9.92 | 14.22 | 13.59 | 10.24 --------------------------------------------------------------------------------------------------------- baseline_dp0.4_lr0.00001 | 9.06 | 13.27 | 13.14 | 9.33 --------------------------------------------------------------------------------------------------------- baseline_dp0.8_lr0.008 | 9.16 | 11.23 | 11.42 | 8.49 --------------------------------------------------------------------------------------------------------- baseline_dp0.8_lr0.0001 | 9.22 | 11.52 | 11.77 | 8.82 --------------------------------------------------------------------------------------------------------- baseline_dp0.8_lr0.00001 | 9.12 | 11.27 | 11.65 | 8.68 --------------------------------------------------------------------------------------------------------- dp-0.4_follow-std-lr | 11.33 | 14.60 | 13.50 | 10.95 --------------------------------------------------------------------------------------------------------- dp-0.8_follow-std-lr | 9.77 | 12.01 | 11.79 | 8.93 --------------------------------------------------------------------------------------------------------- dp-0.4_4-2048 | 11.69 | 16.13 | 14.24 | 11.98 --------------------------------------------------------------------------------------------------------- dp-0.8_4-2048 | 9.46 | 11.60 | 11.98 | 8.78 ---------------------------------------------------------------------------------------------------------
- Test with AURORA4 of 7000 (clean + noisy).
- Follow the standard DNN training learn-rate to avoid the different learn-rate changing time of various DNN training. Similar performance is obtained.
- Find and test unknown noise test-data.(+)
- Have done the droptout on normal trained XEnt NNET , eg wsj(learn-rate:1e-4/1e-5). Seems small learn-rate get the balance of accuracy and train-time.
- Draft the dropout-DNN weight distribution. (++)
- Rectification
- 1) AURORA 4 -15h
(1) Train: train_clean learn-rate/testcase(WER) | test_clean_wv1 | test_airport_wv1 | test_babble_wv1 | test_car_wv1 --------------------------------------------------------------------------------------------------------- std-baseline | 6.04 | 29.91 | 27.76 | 16.37 --------------------------------------------------------------------------------------------------------- lr0.00001 | 8.30 | 43.85 | 46.42 | 29.80 --------------------------------------------------------------------------------------------------------- lr0.0001 | 6.57 | 31.11 | 30.65 | 19.65 --------------------------------------------------------------------------------------------------------- lr0.0006 | 6.19 | 29.23 | 28.45 | 17.31 --------------------------------------------------------------------------------------------------------- lr0.0008 | 6.17 | 28.10 | 27.46 | 14.97 --------------------------------------------------------------------------------------------------------- lr0.001 | 6.28 | 30.01 | 30.26 | 20.81 --------------------------------------------------------------------------------------------------------- lr0.003 | 6.44 | 32.01 | 32.24 | 17.82 --------------------------------------------------------------------------------------------------------- lr0.005 | 6.47 | 33.49 | 34.75 | 18.15 --------------------------------------------------------------------------------------------------------- lr0.007 | 6.72 | 35.85 | 39.72 | 18.03 --------------------------------------------------------------------------------------------------------- lr-0.001_l1-0.001 | 83.19 | 98.57 | 98.84 | 97.77 --------------------------------------------------------------------------------------------------------- lr-0.001_l1-0.0001 | 7.58 | 32.94 | 34.29 | 23.42 --------------------------------------------------------------------------------------------------------- lr-0.001_l1-0.00001 | 6.21 | 29.15 | 28.24 | 19.50 --------------------------------------------------------------------------------------------------------- lr-0.001_l1-0.000001 | 6.30 | 31.91 | 29.23 | 21.52 ---------------------------------------------------------------------------------------------------------
- Combine drop out and rectifier.
- Change the learn-rate in the middle of the training, Modify the train_nnet.sh script(Liu Chao).
- MaxOut (+)
- 6min/epoch, can't use high lr.
- P-norm
- Convolutive network (+)
ORG_DNN.4-1200 WER: 4.50
| WER | hid-layers | hid-dim | delta-order | splice | lda-dim | learn-rate | cnn_init_opts ------------------------------------------------------------------------------------------------------------------ cnn_std_baseline | 4.86 | 5 | 1200 | 0 | 5 | 198 | 0.008 | "--patch-dim1 7"
- AURORA 4
- READ paper
Denoising & Farfield ASR
- ICASSP paper submitted.
- HOLD
VAD
Speech rate training
- Seems ROS model is superior to the normal one with faster speech
- Suggest to extract speech data of different ROS, construct a new test set(+)
- Tencent training data with 100h
low resource language AM training
- Use Chinese NN as initial NN, change the last layer
- Various the used Chinese trained DNN layer numbers.
- feature_transform = 6000h_transform + 6000_N*hidden-layers
- Various the used Chinese trained DNN layer numbers.
nnet.init = random (4-N)*hidden-layers + output-layer | N / learn_rate | 0.008 | 0.001 | 0.0001 | | baseline | 17.00(14*2h) | | | | 4 | 17.75(9*0.6h) | 18.64 | | | 3 | 16.85 | | | | 2 | 16.69 | | | | 1 | 16.87 | | | | 0 | 16.88 | | |
mpe: | Nnet-structure | WER | | baseline | 16.12 | | 4-0-1 | | | 4-1-1 | 16.10 | | 4-2-1 | 15.66 | | 3-1-1 | 16.10 | | 3-2-1 | 15.64 | | 2-2-1 | 15.73 | | 1-3-1 | 15.91 | | 0-4-1 | |
remark: 4-0-1 means 4 hidden-layers from 6000h_CN, 0 hidden-layer from random generation, 1 output-layer.
- feature_transform = uyghur_transform + 6000_N*hidden-layers
nnet.init = random (4-N)*hidden-layers + output-layer Note: This is reproduced Yinshi's experiment | N / learn_rate | 0.008 | 0.001 | 0.0001 | | baseline | 17.00 | | | | 4 | 28.23 | 30.72 | 37.32 | | 3 | 22.40 | | | | 2 | 19.76 | | | | 1 | 17.41 | | | | 0 | | | |
- feature_transform = 6000_transform + 6000_N*hidden-layers
nnet.init = uyghur (4-N)*hidden-layers + output-layer | N / learn_rate | 0.008 | 0.001 | 0.0001 | | baseline | 17.00 | | | | 4 | 17.80 | 18.55 | 21.06 | | 3 | 16.89 | 17.64 | | | 2 | | | | | 1 | | | | | 0 | | | |
- sub word unit language model is ready. Done.
Scoring
- Timber Comparison on testing
Confidence
- Reproduce the experiments on fisher dataset.
- Use the fisher DNN model to decode all-wsj dataset
- preparing scoring for puqiang data
Speaker ID
- Preparing GMM-based server.
- EER ~ 11.2% (GMM-based system)
- test different number of components; fast i-vector computing
Language ID
- GMM-based language is ready.
- Delivered to Jietong
Emotion detection
- Sinovoice is implementing the server
Text Processing
LM development
Domain specific LM
- domain lm
- weibo lm with pruning 0 10 10 20 20 testing done. weibo lm with pruning 0 10 8 8 8 under testing. weibo lm without pruning 4/8 done.
- merger weibo、baiduhi and baiduzhidao lm and test (this week)
- confirm the size of alpa with xiaomin for business application.(like e-13)
- get the general test data from miaomin .this test set may get from online.
- new dict.
- train lm on baiduhi, baiduzhida with new 150k dict and test (this week)
- new toolkit:find method to update the new dict. can get new wordlist from sougou and get word information from baidu.(two week)
tag LM
- set new test
- fix the bug
- record test set and test the unknown address (this week)
RNN LM
- rnn
- RNNLM=>ALPA make a report
- test RNNLM on Chinese data from jietong-data
- check the rnnlm code.
- lstm+rnn
- check the lstm-rnnlm code
Word2Vector
W2V based doc classification
- Initial results variable Bayesian GMM obtained. Performance is not as good as the conventional GMM.
- Non-linear inter-language transform: English-Spanish-Czch: wv model training done, transform model on investigation
- SSA-based local linear mapping still on running.
- k-means classes change to 2.
- Knowledge vector started
- format the data
- yuanbin will continue this work with help of xingchao.
- Character to word conversion
- prepare the task: word similarity
- prepare the dict.
- Google word vector train
- some ideal will discuss on weekly report.
Translation
- v4.0 demo released
- cut the dict and use new segment-tool
QA
- lucene Optimization
- rewrite the method to select the 50 standard question not same template.(this week)
- test the boost keyword weight and extract the synonyms word.(this week)
- check the word segment for template.(this week)
- min-segment method improve the accuracy.(0.61->0.66)
- check the query method for getting lucene information and to rewrite the score method like the idf value.
- test
- test the different idf vale from baidu sougou in fuzzymatch.(this week)
- need to check the other 10% error.(this week)
- spell check
- simple demo done.
- new inter will install SEMPRE