“Approaches to convert RNNLM to BNLM”版本间的差异
来自cslt Wiki
(→related algorithm) |
|||
(相同用户的8个中间修订版本未显示) | |||
第1行: | 第1行: | ||
=main paper= | =main paper= | ||
comparing approaches to convert recurrent neural networks into backoff language models for efficient decoding[http://cslt.riit.tsinghua.edu.cn/mediawiki/images/3/31/IS140337.pdf] | comparing approaches to convert recurrent neural networks into backoff language models for efficient decoding[http://cslt.riit.tsinghua.edu.cn/mediawiki/images/3/31/IS140337.pdf] | ||
+ | =related paper= | ||
+ | * VARIATIONAL APPROXIMATION OF LONG-SPAN LANGUAGE MODELS FOR LVCSR[http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5947612&tag=1] | ||
+ | * Conversion of Recurrent Neural Network Language Models to Weighted Finite State Transducers for Automatic Speech Recognition[http://people.irisa.fr/Gwenole.Lecorve/pdf/lecorve12c.pdf] | ||
+ | * Converting Neural Network Language Models into Back-off Language Models for Efficient Decoding in Automatic Speech Recognition[http://delivery.acm.org/10.1145/2590000/2583722/06645438.pdf?ip=166.111.134.19&id=2583722&acc=ACTIVE%20SERVICE&key=BF85BBA5741FDC6E%2E587F3204F5B62A59%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=593700348&CFTOKEN=42817565&__acm__=1414915690_c0bb48e7020d821b2f5841fa71632ebb] | ||
+ | =related algorithm= | ||
+ | * gibbs sampling[http://cos.name/2013/01/lda-math-mcmc-and-gibbs-sampling/][http://www.xperseverance.net/blogs/tag/gibbs-sampling/] | ||
+ | * Kullback–Leibler divergence[http://zh.wikipedia.org/wiki/%E7%9B%B8%E5%AF%B9%E7%86%B5] |
2014年11月4日 (二) 14:27的最后版本
main paper
comparing approaches to convert recurrent neural networks into backoff language models for efficient decoding[1]
- VARIATIONAL APPROXIMATION OF LONG-SPAN LANGUAGE MODELS FOR LVCSR[2]
- Conversion of Recurrent Neural Network Language Models to Weighted Finite State Transducers for Automatic Speech Recognition[3]
- Converting Neural Network Language Models into Back-off Language Models for Efficient Decoding in Automatic Speech Recognition[4]