“信号处理原理”版本间的差异

来自cslt Wiki
跳转至: 导航搜索
Lyy讨论 | 贡献
 
(相同用户的一个中间修订版本未显示)
第1行: 第1行:
<h3 style="margin: 13pt 0cm"><span style="font-size: 14pt; line-height: 173%; font-family: Calibri"><font face="times new roman,times">SIST Spring Course: Natural Language Processing</font></span></h3><p><strong><span style="font-size: 14pt; font-family: Calibri"><font face="times new roman,times" size="3">Course Description</font></span></strong></p><p><strong><span style="font-size: 14pt; font-family: Calibri"></span></strong><font face="times new roman,times"><span style="font-size: 12pt; font-family: Calibri">Natural language processing is a research involving computer science, linguistics and cognitive science. This course gives systematic introduction of research topics on natural language processing, including morphology, lexicology, syntax, semantics, pragmatics and dialogue. To help the master students understand the natural language processing techniques easily, this course focuses on real applications and systems in course lectures. The following points make this course worth selecting.&nbsp;<span>&nbsp;</span></span><span style="font-size: 12pt; font-family: Calibri">&nbsp;</span></font></p><p><font face="times new roman,times"><span style="font-size: 12pt; font-family: Calibri"></span><span style="font-size: 12pt; font-family: Calibri">1. This course makes use of the classroom as technologic understanding and discussion and the lab for practicing on real natural language processing algorithms and systems. Students are encouraged to come up with novel ideas in course projects. And three special interest groups will be setup to accomplish three interesting projects. <br></span><span style="font-size: 12pt; font-family: Calibri">2. Information presented in this course comes from most recent publications on natural language processing. This is helpful for students to grasp technological core as well as popular trends in this area. <br></span><span style="font-size: 12pt; font-family: Calibri">3. This course will be presented in English. On the one hand, master students from oversea are encouraged to attend without special training on Chinese language.<span>&nbsp; </span>On the other hand, this course is also helpful to Chinese native speakers to follow international development of this research area. In course project, they will also be trained on English communication.&nbsp;</span><span style="font-size: 12pt; font-family: Calibri">&nbsp;</span></font></p><p><font face="times new roman,times"><span style="font-size: 12pt; font-family: Calibri"></span><span style="font-size: 12pt; font-family: Calibri">This course targets at master students from departments of <strong>computer science</strong>, <strong>automation</strong> and <strong>electronics</strong> who already have theoretical background of <strong>artificial intelligence</strong>. Besides, this course is also very helpful for master students from department of Chinese language whose major is <strong>computation linguistics</strong>.&nbsp;</span><span style="font-size: 12pt; font-family: Calibri">&nbsp;</span></font></p><p><font face="times new roman,times"><span style="font-size: 12pt; font-family: Calibri"></span><strong><span style="font-size: 14pt; font-family: Calibri">Syllabus</span></strong> </font></p><table border="1" cellspacing="0" cellpadding="0" width="629" class="MsoTableGrid" style="margin: auto auto auto 5.4pt; width: 471.5pt; border-collapse: collapse; border: medium none"><<tr><td width="51" valign="top" style="padding-right: 5.4pt; padding-left: 5.4pt; background: #ccffff; padding-bottom: 0cm; width: 38.45pt; padding-top: 0cm; border: windowtext 1pt solid"><span style="font-size: 12pt; font-family: Calibri"><font face="times new roman,times">Week</font></span></td><td width="577" valign="top" style="border-right: windowtext 1pt solid; padding-right: 5.4pt; border-top: windowtext 1pt solid; padding-left: 5.4pt; background: #ccffff; padding-bottom: 0cm; border-left: #ece9d8; width: 433.05pt; padding-top: 0cm; border-bottom: windowtext 1pt solid"><span style="font-size: 12pt; font-family: Calibri"><font face="times new roman,times">Topic</font></span></td></tr><tr><td width="51" valign="top" style="border-right: windowtext 1pt solid; padding-right: 5.4pt; border-top: #ece9d8; padding-left: 5.4pt; padding-bottom: 0cm; border-left: windowtext 1pt solid; width: 38.45pt; padding-top: 0cm; border-bottom: windowtext 1pt solid; background-color: transparent"><span style="font-size: 12pt; font-family: Calibri"><font face="times new roman,times">1</font></span></td><td width="577" valign="top" style="border-right: windowtext 1pt solid; padding-right: 5.4pt; border-top: #ece9d8; padding-left: 5.4pt; padding-bottom: 0cm; border-left: #ece9d8; width: 433.05pt; padding-top: 0cm; border-bottom: windowtext 1pt solid; background-color: transparent"><font face="times new roman,times"><span style="font-size: 12pt; font-family: Calibri">Course Introduction NLP</span><span style="font-size: 12pt; font-family: Calibri">Recent Development of Natural Language Processing Research</span></font></td></tr><tr><td width="51" valign="top" style="border-right: windowtext 1pt solid; padding-right: 5.4pt; border-top: #ece9d8; padding-left: 5.4pt; padding-bottom: 0cm; border-left: windowtext 1pt solid; width: 38.45pt; padding-top: 0cm; border-bottom: windowtext 1pt solid; background-color: transparent"><span style="font-size: 12pt; font-family: Calibri"><font face="times new roman,times">2</font></span></td><td width="577" valign="top" style="border-right: windowtext 1pt solid; padding-right: 5.4pt; border-top: #ece9d8; padding-left: 5.4pt; padding-bottom: 0cm; border-left: #ece9d8; width: 433.05pt; padding-top: 0cm; border-bottom: windowtext 1pt solid; background-color: transparent"><span style="font-size: 12pt; font-family: Calibri"><font face="times new roman,times">Lexical Analysis on Chinese Text and ICTCLAS</font></span></td></tr><tr><td width="51" valign="top" style="border-right: windowtext 1pt solid; padding-right: 5.4pt; border-top: #ece9d8; padding-left: 5.4pt; padding-bottom: 0cm; border-left: windowtext 1pt solid; width: 38.45pt; padding-top: 0cm; border-bottom: windowtext 1pt solid; background-color: transparent"><span style="font-size: 12pt; font-family: Calibri"><font face="times new roman,times">3</font></span></td><td width="577" valign="top" style="border-right: windowtext 1pt solid; padding-right: 5.4pt; border-top: #ece9d8; padding-left: 5.4pt; padding-bottom: 0cm; border-left: #ece9d8; width: 433.05pt; padding-top: 0cm; border-bottom: windowtext 1pt solid; background-color: transparent"><span style="font-size: 12pt; font-family: Calibri"><font face="times new roman,times">Dependency parsing and HIT Dpaser</font></span></td></tr><tr><td width="51" valign="top" style="border-right: windowtext 1pt solid; padding-right: 5.4pt; border-top: #ece9d8; padding-left: 5.4pt; padding-bottom: 0cm; border-left: windowtext 1pt solid; width: 38.45pt; padding-top: 0cm; border-bottom: windowtext 1pt solid; background-color: transparent"><span style="font-size: 12pt; font-family: Calibri"><font face="times new roman,times">4</font></span></td><td width="577" valign="top" style="border-right: windowtext 1pt solid; padding-right: 5.4pt; border-top: #ece9d8; padding-left: 5.4pt; padding-bottom: 0cm; border-left: #ece9d8; width: 433.05pt; padding-top: 0cm; border-bottom: windowtext 1pt solid; background-color: transparent"><span style="font-size: 12pt; font-family: Calibri"><font face="times new roman,times">WordNet and HowNet, the semantic knowledge base and applications</font></span></td></tr><tr><td width="51" valign="top" style="border-right: windowtext 1pt solid; padding-right: 5.4pt; border-top: #ece9d8; padding-left: 5.4pt; padding-bottom: 0cm; border-left: windowtext 1pt solid; width: 38.45pt; padding-top: 0cm; border-bottom: windowtext 1pt solid; background-color: transparent"><span style="font-size: 12pt; font-family: Calibri"><font face="times new roman,times">5</font></span></td><td width="577" valign="top" style="border-right: windowtext 1pt solid; padding-right: 5.4pt; border-top: #ece9d8; padding-left: 5.4pt; padding-bottom: 0cm; border-left: #ece9d8; width: 433.05pt; padding-top: 0cm; border-bottom: windowtext 1pt solid; background-color: transparent"><span style="font-size: 12pt; font-family: Calibri"><font face="times new roman,times">Guest Lecture on Natural Language Dialogue System</font></span></td></tr><tr><td width="51" valign="top" style="border-right: windowtext 1pt solid; padding-right: 5.4pt; border-top: #ece9d8; padding-left: 5.4pt; padding-bottom: 0cm; border-left: windowtext 1pt solid; width: 38.45pt; padding-top: 0cm; border-bottom: windowtext 1pt solid; background-color: transparent"><span style="font-size: 12pt; font-family: Calibri"><font face="times new roman,times">6</font></span></td><td width="577" valign="top" style="border-right: windowtext 1pt solid; padding-right: 5.4pt; border-top: #ece9d8; padding-left: 5.4pt; padding-bottom: 0cm; border-left: #ece9d8; width: 433.05pt; padding-top: 0cm; border-bottom: windowtext 1pt solid; background-color: transparent"><span style="font-size: 12pt; font-family: Calibri"><font face="times new roman,times">Corpus and Corpus based NLP Techniques</font></span></td></tr><tr><td width="51" valign="top" style="border-right: windowtext 1pt solid; padding-right: 5.4pt; border-top: #ece9d8; padding-left: 5.4pt; padding-bottom: 0cm; border-left: windowtext 1pt solid; width: 38.45pt; padding-top: 0cm; border-bottom: windowtext 1pt solid; background-color: transparent"><span style="font-size: 12pt; font-family: Calibri"><font face="times new roman,times">7</font></span></td><td width="577" valign="top" style="border-right: windowtext 1pt solid; padding-right: 5.4pt; border-top: #ece9d8; padding-left: 5.4pt; padding-bottom: 0cm; border-left: #ece9d8; width: 433.05pt; padding-top: 0cm; border-bottom: windowtext 1pt solid; background-color: transparent"><span style="font-size: 12pt; font-family: Calibri"><font face="times new roman,times">Guest Lecture on Machine Translation</font></span></td></tr><tr><td width="51" valign="top" style="border-right: windowtext 1pt solid; padding-right: 5.4pt; border-top: #ece9d8; padding-left: 5.4pt; padding-bottom: 0cm; border-left: windowtext 1pt solid; width: 38.45pt; padding-top: 0cm; border-bottom: windowtext 1pt solid; background-color: transparent"><span style="font-size: 12pt; font-family: Calibri"><font face="times new roman,times">8</font></span></td><td width="577" valign="top" style="border-right: windowtext 1pt solid; padding-right: 5.4pt; border-top: #ece9d8; padding-left: 5.4pt; padding-bottom: 0cm; border-left: #ece9d8; width: 433.05pt; padding-top: 0cm; border-bottom: windowtext 1pt solid; background-color: transparent"><span style="font-size: 12pt; font-family: Calibri"><font face="times new roman,times">Information Extraction Technologies</font></span></td></tr><tr><td width="51" valign="top" style="border-right: windowtext 1pt solid; padding-right: 5.4pt; border-top: #ece9d8; padding-left: 5.4pt; padding-bottom: 0cm; border-left: windowtext 1pt solid; width: 38.45pt; padding-top: 0cm; border-bottom: windowtext 1pt solid; background-color: transparent"><span style="font-size: 12pt; font-family: Calibri"><font face="times new roman,times">9</font></span></td><td width="577" valign="top" style="border-right: windowtext 1pt solid; padding-right: 5.4pt; border-top: #ece9d8; padding-left: 5.4pt; padding-bottom: 0cm; border-left: #ece9d8; width: 433.05pt; padding-top: 0cm; border-bottom: windowtext 1pt solid; background-color: transparent"><span style="font-size: 12pt; font-family: Calibri"><font face="times new roman,times">Machine Learning Approaches to NLP</font></span></td></tr><tr><td width="51" valign="top" style="border-right: windowtext 1pt solid; padding-right: 5.4pt; border-top: #ece9d8; padding-left: 5.4pt; padding-bottom: 0cm; border-left: windowtext 1pt solid; width: 38.45pt; padding-top: 0cm; border-bottom: windowtext 1pt solid; background-color: transparent"><span style="font-size: 12pt; font-family: Calibri"><font face="times new roman,times">10</font></span></td><td width="577" valign="top" style="border-right: windowtext 1pt solid; padding-right: 5.4pt; border-top: #ece9d8; padding-left: 5.4pt; padding-bottom: 0cm; border-left: #ece9d8; width: 433.05pt; padding-top: 0cm; border-bottom: windowtext 1pt solid; background-color: transparent"><span style="font-size: 12pt; font-family: Calibri"><font face="times new roman,times">Modern Information Retrieval</font></span></td></tr><tr><td width="51" valign="top" style="border-right: windowtext 1pt solid; padding-right: 5.4pt; border-top: #ece9d8; padding-left: 5.4pt; padding-bottom: 0cm; border-left: windowtext 1pt solid; width: 38.45pt; padding-top: 0cm; border-bottom: windowtext 1pt solid; background-color: transparent"><span style="font-size: 12pt; font-family: Calibri"><font face="times new roman,times">11</font></span></td><td width="577" valign="top" style="border-right: windowtext 1pt solid; padding-right: 5.4pt; border-top: #ece9d8; padding-left: 5.4pt; padding-bottom: 0cm; border-left: #ece9d8; width: 433.05pt; padding-top: 0cm; border-bottom: windowtext 1pt solid; background-color: transparent"><span style="font-size: 12pt; font-family: Calibri"><font face="times new roman,times">Text classification and clustering</font></span></td></tr><tr><td width="51" valign="top" style="border-right: windowtext 1pt solid; padding-right: 5.4pt; border-top: #ece9d8; padding-left: 5.4pt; padding-bottom: 0cm; border-left: windowtext 1pt solid; width: 38.45pt; padding-top: 0cm; border-bottom: windowtext 1pt solid; background-color: transparent"><span style="font-size: 12pt; font-family: Calibri"><font face="times new roman,times">12</font></span></td><td width="577" valign="top" style="border-right: windowtext 1pt solid; padding-right: 5.4pt; border-top: #ece9d8; padding-left: 5.4pt; padding-bottom: 0cm; border-left: #ece9d8; width: 433.05pt; padding-top: 0cm; border-bottom: windowtext 1pt solid; background-color: transparent"><span style="font-size: 12pt; font-family: Calibri"><font face="times new roman,times">Guest Lecture on NLP evaluation</font></span></td></tr><tr><td width="51" valign="top" style="border-right: windowtext 1pt solid; padding-right: 5.4pt; border-top: #ece9d8; padding-left: 5.4pt; padding-bottom: 0cm; border-left: windowtext 1pt solid; width: 38.45pt; padding-top: 0cm; border-bottom: windowtext 1pt solid; background-color: transparent"><span style="font-size: 12pt; font-family: Calibri"><font face="times new roman,times">13</font></span></td><td width="577" valign="top" style="border-right: windowtext 1pt solid; padding-right: 5.4pt; border-top: #ece9d8; padding-left: 5.4pt; padding-bottom: 0cm; border-left: #ece9d8; width: 433.05pt; padding-top: 0cm; border-bottom: windowtext 1pt solid; background-color: transparent"><span style="font-size: 12pt; font-family: Calibri"><font face="times new roman,times">Text Mining</font></span></td></tr><tr><td width="51" valign="top" style="border-right: windowtext 1pt solid; padding-right: 5.4pt; border-top: #ece9d8; padding-left: 5.4pt; background: #f3f3f3; padding-bottom: 0cm; border-left: windowtext 1pt solid; width: 38.45pt; padding-top: 0cm; border-bottom: windowtext 1pt solid"><span style="font-size: 12pt; font-family: Calibri"><font face="times new roman,times">14</font></span></td><td width="577" valign="top" style="border-right: windowtext 1pt solid; padding-right: 5.4pt; border-top: #ece9d8; padding-left: 5.4pt; background: #f3f3f3; padding-bottom: 0cm; border-left: #ece9d8; width: 433.05pt; padding-top: 0cm; border-bottom: windowtext 1pt solid"><span style="font-size: 12pt; font-family: Calibri"><font face="times new roman,times">Course project presentation (1)</font></span></td></tr><tr><td width="51" valign="top" style="border-right: windowtext 1pt solid; padding-right: 5.4pt; border-top: #ece9d8; padding-left: 5.4pt; background: #f3f3f3; padding-bottom: 0cm; border-left: windowtext 1pt solid; width: 38.45pt; padding-top: 0cm; border-bottom: windowtext 1pt solid"><span style="font-size: 12pt; font-family: Calibri"><font face="times new roman,times">15</font></span></td><td width="577" valign="top" style="border-right: windowtext 1pt solid; padding-right: 5.4pt; border-top: #ece9d8; padding-left: 5.4pt; background: #f3f3f3; padding-bottom: 0cm; border-left: #ece9d8; width: 433.05pt; padding-top: 0cm; border-bottom: windowtext 1pt solid"><span style="font-size: 12pt; font-family: Calibri"><font face="times new roman,times">Course project presentation (2)</font></span></td></tr><tr><td width="51" valign="top" style="border-right: windowtext 1pt solid; padding-right: 5.4pt; border-top: #ece9d8; padding-left: 5.4pt; background: #f3f3f3; padding-bottom: 0cm; border-left: windowtext 1pt solid; width: 38.45pt; padding-top: 0cm; border-bottom: windowtext 1pt solid"><span style="font-size: 12pt; font-family: Calibri"><font face="times new roman,times">16</font></span></td><td width="577" valign="top" style="border-right: windowtext 1pt solid; padding-right: 5.4pt; border-top: #ece9d8; padding-left: 5.4pt; background: #f3f3f3; padding-bottom: 0cm; border-left: #ece9d8; width: 433.05pt; padding-top: 0cm; border-bottom: windowtext 1pt solid"><span style="font-size: 12pt; font-family: Calibri"><font face="times new roman,times">Course project presentation (3)</font></span></td></tr></table><p><font face="times new roman,times"><strong><span style="font-size: 14pt; font-family: Calibri">&nbsp;</span></strong><strong><span style="font-size: 14pt; font-family: Calibri">Reference textbooks</span></strong></font></p><p><font face="times new roman,times"><strong><span style="font-size: 14pt; font-family: Calibri"></span></strong><span style="font-size: 12pt; font-family: Calibri">1. <em>Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition</em> by Daniel Jurafsky and James H. Martin, Prentice Hall Press<br></span></font><font face="times new roman,times"><span style="font-size: 12pt; font-family: Calibri">2. <em>Foundation of Statistical Natural Language Processing</em> by Christopher D. Manning and Hinrich Schütze</span><span style="font-size: 12pt; font-family: 宋体">,</span><span style="font-size: 12pt; font-family: Calibri">MIT Press.<br></span><span style="font-size: 12pt; font-family: Calibri">3. <em>Foundations of Computational Linguistics: Human-Computer Communication in Natural Language</em> by Roland Hausser, Springer.<br></span><span style="font-size: 12pt; font-family: Calibri">4. <em>Handbook for Natural Language Processing</em>, edited by Robert Dale, Springer<font color="#000000">.</font></span><strong><span style="font-size: 14pt; font-family: Calibri"><font color="#000000">&nbsp;</font></span></strong></font></p>
+
==信号处理原理==
 +
<br/>
 +
授课对象:大三本科专业基础课<br/>
 +
<br/>
 +
授课老师:徐明星<br/>
 +
<br/>
 +
内容简介:<br/>
 +
<br/>
 +
本课程是计算机科学与技术专业本科生的一门必修课程,主要介绍信号的基本概念及信号处理的基本方法。<br/>
 +
<br/>
 +
内容包括:信号基本概念和基本运算、信号处理与数字信号处理的基本原理与过程、周期信号的傅里叶级数展开、连续时间傅里叶变换、离散时间傅里叶变换、离散傅里叶变换与FFT算法、Z变换、连续时间系统与离散时间系统的分析方法、滤波器的基本原理等。<br/>
 +
<br/>
 +
考核重点是学生是否掌握信号处理的基本原理,以及分析和处理实际问题的方法,以应用为最终目的。要求学生能熟练掌握或掌握各知识点;理解对信号处理的基本原理和各种基本方法;能够将所学理论与分析方法应用到解决实际问题中去。要培养和提高自己运用已掌握的知识来学习、理解和掌握新方法与新技术的能力。<br/>
 +
<br/>
 +
要求先修的课程为高等数学。

2014年8月22日 (五) 01:34的最后版本

信号处理原理


授课对象:大三本科专业基础课

授课老师:徐明星

内容简介:

本课程是计算机科学与技术专业本科生的一门必修课程,主要介绍信号的基本概念及信号处理的基本方法。

内容包括:信号基本概念和基本运算、信号处理与数字信号处理的基本原理与过程、周期信号的傅里叶级数展开、连续时间傅里叶变换、离散时间傅里叶变换、离散傅里叶变换与FFT算法、Z变换、连续时间系统与离散时间系统的分析方法、滤波器的基本原理等。

考核重点是学生是否掌握信号处理的基本原理,以及分析和处理实际问题的方法,以应用为最终目的。要求学生能熟练掌握或掌握各知识点;理解对信号处理的基本原理和各种基本方法;能够将所学理论与分析方法应用到解决实际问题中去。要培养和提高自己运用已掌握的知识来学习、理解和掌握新方法与新技术的能力。

要求先修的课程为高等数学。