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Speech signal
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Q: What are special?

https://deepmind.com/blog/wavenet-generative-model-raw-audio/



Speech signal
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e Random,periodic,constrained...
e Short-time stationary (in statistics)
e [ong-time dependency (articulatory, linguistics, logical...)

https://deepmind.com/blog/wavenet-generative-model-raw-audio/



Speech analysis
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Decompose speech to simple components



Trivial decomposition by Fourier transform
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Narrow-band analysis

Pulse Train
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Long Section Spectra:
- Shows Harmonics
- Narrow Band Analysis
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https://www.phon.ucl.ac.uk/courses/spsci/acoustics/week1-10.pdf



Wide-band analysis

Pulse Train
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Short Analysis Sections

Short Section Spectra:
- Shows Pulses
- Wide Band Analysis
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https://www.phon.ucl.ac.uk/courses/spsci/acoustics/week1-10.pdf




Balance between frequency and time
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Physiological decomposition
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http://147.162.36.50/cochlea/cochleapages/theory/sndproc/sndcomm.htm




FO, harmonics, and formants
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This figure illustrates the spectral structure of the harmonics under the formant profile of vowel a. In the course of a
speech utterance, these profiles undergo abrupt changes that can perceived by the auditory apparatus only if
appropriately filtered.

http.//147.162.36.50/cochlea/cochleapages/theory/sndproc/sndcomm.htm



Acoustics and phonetics
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Ciross sections of spectra from the middle of English vowels
of a male speaker, showing formants as spectral peaks.

From D.0O'Shaughnessy (1990) - Speech Communication, Addison-Wesley Pub.Com.



Acoustics and articulatory
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* F1:pharynx
e F2:oral cavity

* F3:nasal cavity (nasal vowels, in
french for instance)

F4 : sinuses (singing formant)




Articulatory and phonetics
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Articulatory, acoustics, and phonetics
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This decomposition is in sufficient

* To make the production model computable, it must be simple, thus
cannot handle too much practical situations, e.g., the pseudo periodic
source, the nonlinear effect of the vocal tract...

* It does not use labelled data, purely rely on assumption.

* The decomposition is nothing to do with information retrieval tasks,
e.g., speech recognition and speaker recognition.

* It resembles to MFCC, which is perfect well designed, but not
necessarily the best feature for a particular task.



We hope a factorization model

* Informational: The factors correspond to some desired information,
i.e., they should be useful.

* Orthogonal: Flexible enough to derive uncorrelated factors if these
factors are truly independent.

* Complete: Information preservation



Shallow factorization

« GMM-UBM: phone and speaker factorization
X = My%+ m 9+ed

* JFA: phone, speaker and session factorization
X =My T,m+ Vin, + e

e j-vector: phone and session factorization
X =Myt Vyn, + ed

Keynote: short-long bias



Deep factorization

* Place short/long bias

(a) Generative Model (b) Inference Model

Figure 2: Graphical illustration of the proposed generative model and inference model. Grey nodes
denote the observed variables, and white nodes are the hidden variables.

Hsu et al., Unsupervised Learning of Disentangled and Interpretable Representations from
Sequential Data, NIPS 2017.
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Figure 3: Sequence-to-sequence factorized hierarchical variational autoencoder. Dashed lines indicate
the sampling process using the reparameterization trick [23]]. The encoders for z; and z, are pink
and amber, respectively, while the decoder for @ 1s blue. Darker colors denote the recurrent neural
networks, while lighter colors denote the fully-connected layers predicting the mean and log variance.

Hsu et al., Unsupervised Learning of Disentangled and Interpretable Representations from
Sequential Data, NIPS 2017.



Figure 4: (left) Examples generated by varying different latent variables. (right) An illustration
of harmonics and formants in filter bank images. The green block ‘A’ contains four reconstructed
examples. The red block ‘B’ contains ten original sequences on the first row with the corresponding
reconstructed examples on the second row. The entry on the i-th row and the j-th column in the blue
block “C’ is the reconstructed example using the latent segment variable zq of the ¢-th row from block
‘A’ and the latent sequence variable z9 of the 7-th column from block ‘B’.

Hsu et al., Unsupervised Learning of Disentangled and Interpretable Representations from
Sequential Data, NIPS 2017.



reconstructed reference female utterance

FHVAE
reference female utterance Decoder
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figure 5: FHVAE (o = 0) decoding results of three combinations of latent segment variables z;
ind [atent sequence variables z3 from one male-speaker utterance (top-left) and one female-speaker
itterance (bottom-left) in Aurora-4. By rep]acing zo of a male-speaker utterance with z9 of a female-
;peaker utterance, an FHVAE decodes a voice-converted utterance (middle-right) that preserves the
inguistic content. Audio samples are available at https://youtu.be/VMX3IZYWYdg,

Hsu et al., Unsupervised Learning of Disentangled and Interpretable Representations from
Sequential Data, NIPS 2017.



Some insights

* The deep factorization is not much different from i-vector. All of them
place the factorization in the way of short/long bias, and all of them is
based on maximum likelihood.

(a) Generative Model (b) Inference Model

Figure 2: Graphical illustration of the proposed generative model and inference model. Grey nodes
denote the observed variables, and white nodes are the hidden variables.



Key shortage

* Our goal is a powerful factorization model, for that goal we should
use as much resource as possible, rather than rely on the simple
structure bias.

* This bias is not much different from the production model, to some
extent.

 The likelihood is not accurate with VAE.



We can use subspace flow to solve the
problem

* A purely information preservation model
* Purely supervised learning
* Flexible enough to learn independent factors
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Subspace flow

. L : : phone |
* Divide variation to two groups of dimensions,

each one correspond to a factor

* |If the label for one factor miss, it returns back to Q © O
the general NF if the prior is assumed to be
Gaussian; otherwise, it is treated as a training
example for the GMM model, each component
corresponding to a particular value of the discrete Q
factor (e.g., phone).

* For the training data, the two factors can be
made independent, but for test set, there would
be residual dependency that should be solved. speaker



How to deal with sequential data?

* Essentially, the speaker label has provided more than the sequential
data provides.

 However, we didn’t use it for inference. A possible way is to infer the
true mean vector, and then compute the likelihood ratio for the
testing data, where the prior is set to be the speaker dependent and
speaker independent.



Revisit the importance of induction bias

Challenging Common Assumptions in the
Unsupervised Learning of Disentangled
Representations

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard
Schélkopf, Olivier Bachem ; Proceedings of the 36th International Conference on Machine
Learning, PMLR 97:4114-4124, 2019,

Abstract

The key idea behind the unsupervised learning of disentangled representations is that real-world data is
enerated by a few explanatory factors of variation which can be recovered by unsupervised learning

Igorithms. In this paper, we provide a sober look at recent progress in the field and challenge some
ommon assumptions. We first theoretically show that the unsupervised learning of disentangled
epresentations is fundamentally impossible without inductive biases on both the models and the data.
'hen, we train more than 12000 models covering most prominent methods and evaluation metrics in a

reproducible large-scale experimental study on seven different data sets. We observe that while the
different methods successfully enforce properties “encouraged” by the corresponding losses, well-
disentangled models seemingly cannot be identified without supervision. Furthermore, increased
disentanglement does not seem to lead to a decreased sample complexity of learning for downstream
tasks. Our results suggest that future work on disentanglement learning should be explicit about the role
of inductive biases and (implicit) supervision, investigate concrete benefits of enforcing disentanglement
of the learned representations, and consider a reproducible experimental setup covering several data
sets.

* Locatello F, Bauer S, Lucic M, et al. Challenging common assumptions in the
unsupervised learning of disentangled representations, ICML 2019.



Deep image prior

Ulyanov D, Vedaldi A, Lempitsky V. Deep image
prior[C]//Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2018: 9446-9454.
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(c) Bicubic, Not trained d) Deep prior, Not trained

Figure 1: Super-resolution using the deep image prior.
Our method uses a randomly-initialized ConvNet to upsam-
ple an image, using its structure as an image prior; similar
to bicubic upsampling, this method does not require learn-
ing, but produces much cleaner results with sharper edges.
In fact, our results are quite close to state-of-the-art super-
resolution methods that use ConvNets learned from large
datasets. The deep image prior works well for all inverse
problems we could test.
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(e) ResNet, depth=8

Figure 8: Inpainting using different depths and architectures. The figure shows that much better inpainting results can be
obtained by using deeper random networks. However, adding skip connections to ResNet in U-Net is highly detrimental.



Deep prior for speech

Fitting: 50 steps Fitting: 200 steps  Fitting: 1000 steps  Fitting: 50 steps Fitting: 200 steps  Fitting: 1000 steps

(a) Input Signal (b) Convolution

Fitting: 50 steps Fitting: 200 steps Fitting: 1000 steps , Fitting: 50 steps Fitting: 200 steps  Fitting: 1000 steps

(d) Clean Signal (e) Wave-U-Net (f) Harmonic Convolution

DEep AUDIO PRIORS EMERGE FROM HARMONIC CONVOLUTIONAL
NETWORKS, ICLR 2020.



More discussion on bias

* Bias is axiom (foundation of the geometry)

* Bias is intuition and belief for models (e.g., production model, do you
know it is true?)

* Bias is prior in inference

e Bias is knowledge (low Entropy)

* Bias is belief, intuition, and intention in model design
* No free lunch, no general model, no blind learning

* Bias is good, but it should not be a hindrance, otherwise will be
broken.



