

Truncated Speech based Speaker Recognition

Bie Fanhu CSLT, RIIT, THU

outline

- ☐ Truncated Speech Definition
- ☐ Analysis on Truncated Sine Signal
- ☐ Impact on Speaker Recognition
- ☐ Detection for Truncated Speech Segments
- ☐ Future Work

Truncated Speech

Figure for Truncated Speech

- The speech envelope is a straight line in some part
- The amplitude of the sample points exceed the range of AD
- The AD gives out the same the maximum value for the sample point.

Truncated Speech

Figure for Pseudo Truncated Speech

- The speech envelope is like a straight line in some part
- ➤ AGC (automatic gain control) has high gains on low volume and low gains on high volume

Real Truncated Speech

Different Types of Truncated Speech

Speech signalDamage level

a) No damage

b) Little damage

c) Serious damage

Analysis

Analysis on Truncated Sine Wave

- Fourier analysis: The speech signal can be represented as a combination of simple sine waves
- Analyze on the sine wave, truncate the wave according to its maximum volume by 60% and 20%
- > The energy extends to odd multiples of the basic frequency
- The higher the frequency of the harmonics is, the smaller energy has distributed to

Matlab Analysis

Simulation on Speech

Simulation

- Database: Truncated the speech according to the maximum volume of each utterance by 10%, 20%, 40%, 60%. 100% stands for the original speech
- ➤ Hearing test: 5 persons listen to utterances from different truncated rate. Judge whether it is the original speech
- Performance: GMM-UBM, i-vector on different truncated rate database

Hearing Test

- The lower truncated rate is, the greater the difference is
- Even truncated by 40%, there is still not great difference from the original speech

Speaker Recognition

GMM-UBM

i-vector

- > Remain rate > 40%: performance keeps
- \triangleright Remain rate = 10%, performance decreases > 50%
- > Pseudo truncated condition: performance decreases sharply

Detection for Truncated Speech Segments

- I. Treat 0.5 s as a segment
- II. Separate into segments by the volume
- III. Count points to get the distribution for each segments
- IV. Judge if it is the truncated segment

4) Histograms of distribution

Detection based on the histogram of distribution

- I. Find the maximum absolute value of the speech and separate into 20 intervals by the value
- II. Count the points located in the intervals of one 0.5s-segment
- III. If the point number of the last interval is larger than threshold, detect it as a truncated segment

6) DET of truncated segments detection

Performance of discarding the truncated segments

☐ Conclusions

- When the truncated rate more then 80%, the performance will drops great
- We give out a propose to detection by the distribution of sample points, which is able to detect the truncated speech
- Only by discarding the truncated segments, will the performance decrease

☐ Future work

- > Speech recovery
- > DNN mapping

Experiments and results

Thank you!