Speaker Recognition Research by the Recent Graduates in CSLT

WU, Xiaojun 2012-11

Persons

- Masters
 - WU, Wei in 2007
 - BAO, Huanjun in 2007 (SVM)
 - LUO, Canhu in 2011 (embedded, text dependent)
- PhDs
 - XIONG, Zhenyu in 2005
 - DENG, Jing in 2006
 - WANG, Gang in 2011

Speaker Recognition Steps

Motivations and Approaches

- Motivations
 - Better recognition results
 - Robustness of noise and cross-channel
 - Speeding-up
- Approaches
 - New processing methods
 - Additional processes
 - Data structures

Noise Robust Feature Extraction

DENG's Idea

- Wave peaks and troughs contain speaker information more than other parts
- Noise changes troughs greatly
- Use a sine filter to help detect peaks and troughs with differential power estimation
- Estimate the clean speech power spectrum by accumulating the differential power values

GMM-UBM Modeling

- Gaussian Mixture Model
 - A weighted group of multi-dimensional Gaussian distributions to represent any distribution of vectors
- Universal Background Model
 - Trained from feature vectors of a large amount of speakers, the UBM represents an average distribution of features in the GMM format
- Speaker models
 - Adapted from the UBM with the speaker's own feature vectors, also in the GMM format

GMM-UBM Scoring

- Recognition score = average of all frame scores
- Frame scoring (to score the feature of the frame)
 - Find top N Gaussian components in the UBM with the highest probabilities (N equals 4 or 5 commonly)
 - score against the UBM = the product of the N probabilities
 - score against the speaker model = the product of the N probabilities of the corresponding N Gaussian components in the speaker model
 - Frame score = log (score against the speaker model)
 - log (score against the UBM)

New Data Structure to Speed Up

XIONG's Idea (1)

 Rearrange the Gaussian components in the UBM into a tree

XIONG's Idea (2)

 Rearrange the sequence of feature vectors so as to prune as early as possible

25 times faster, no accuracy drop

Noise Robust Scoring

XIONG's Idea

Clean frames are more reliable than noisy frames

Error rate drops 8.7% in average and 13.4% in [OdB, 10dB] than spectral subtraction.

New Ideas in Scoring

XIONG's Idea (for Open-set SI)

- Every part of feature vectors should be with high confidence measure for the true speaker
- Use segmental confidence measures to train an ANN as a classifier
- EER is 30% relative lower than log-likelihood

Cross-channel Robust Modeling

DENG's Idea

- For any model M in channel cM(c) = m + Uz(c)
- Where, m: the channel free model
 U: basis matrix for channel space
 Uz(c): channel projection
- By training to get *U*, we find the projection matrix

$$P = UU^{t}$$
, and $PU = UU^{t}U = U$

DENG's Idea – cont.

- Define: C(spk, c) = PM(spk, c) = Pm(spk) + Uz(c)
- Store: M'(spk) = (I-P)M(spk, c1) = (I-P)m(spk)UBM' = (I-P)UBM(c1)

DENG's Idea – cont.

- When scoring utterance t in channel c2
 - Train M(t, c2) based on UBM(c1) to get C(t, c2) = PM(t, c2) = Pm(t) + Uz(c2)
 - Use C(t, c2) + M'(spk) to estimate M(spk, c2), and C(t, c2) + UBM' to estimate UBM(c2)
 - Same Pm(t) both in M(spk, c2) and UBM(c2) → offset M(t, c2) M(t, c2) Pm(t) Uz(c2) C(t, c2)

WU's Idea

- UBM-based speaker model synthesis assumes
 △UBM = △speaker across channels
- Really?
- △ Cohort ≈ △ speaker instead

Application: Speaker Detection

Common Steps

Speaker Segmentation (1)

- Distance measure of a speech segment to a model is the key technology
 - To find long distance between adjacent segments
 - To find big difference between distances of adjacent speech segments to same models

 WANG used phoneme based text dependent recognition scores of the adjacent segments

Speaker Segmentation (2)

- DENG used the log likelihood ratio score of the adjacent segments to the UBM
- WANG proposed Reference Speaker Models
 - Speech segments from the same speaker have similar distances to other models
 - Cluster known speakers into a set of Reference
 Speaker Models
 - RSMs can also used to measure the distance between two speech segments

Speaker Clustering

- DENG used a small UBM for rough clustering and then a large UBM for fine clustering
- WANG used
 - RSMs to measure distances between segments
 - Within-class dispersion to keep high class purity

Speaker Identification

- WANG proposed
 - Pre-calculate the distances of every speaker's speech to RSMs
 - Calculate the distances of the test speech to RSMs
 - Find speakers with similar distances for further identification

 Speed up: cluster speakers to save calculation of distance similarity

Reference

Can be found on Prof. Zheng's homepage, including papers and thesises.