# Continuous Space Language Model(NNLM) 

Liu Rong<br>Intern students of CSLT<br>2013-12-30

## Outline

- N-gram
- Introduction
- data sparsity and smooth
- NNLM
- Introduction
- Multi NNLMs
- Toolkit
- Word2vec(Deep learing in NLP)
- Introduction
- some methods on train word2vec
- Toolkit
- References


## N -gram-Introduction

- N-Gram
- A language model is usually formulated as a probability distribution $p(s)$ over strings $s$ that attempts to reflect how frequently a string $s$ occurs as a sentence

$$
\mathrm{p}(\mathrm{~s})=\mathrm{p}\left(\mathrm{w}_{1}, \mathrm{w}_{2}, \cdots, \mathrm{w}_{k}\right)=\mathrm{p}\left(\mathrm{w}_{1}\right) \mathrm{p}\left(\mathrm{w}_{2} \mid \mathrm{w}_{1}\right) \cdots \mathrm{p}\left(\mathrm{w}_{k} \mid \mathrm{w}_{1}, \mathrm{w}_{2}, \cdots, \mathrm{w}_{k-1}\right)
$$

- n-gram

$$
p(s)=\prod_{i=1}^{l+1} p\left(w_{i} \mid w_{i-n+1}^{i-1}\right) \quad p\left(w_{i} \mid w_{i-n+1}^{i-1}\right)=\frac{c\left(w_{i-n+1}^{i}\right)}{\sum_{w_{i}} c\left(w_{i-n+1}^{i}\right)}
$$

- example(3-gram)
eg: "This is a example"
p (This is a example) $\approx \mathrm{p}($ This $|<\mathrm{s}\rangle) \mathrm{p}$ (is $\mid$ This $<\mathrm{s}\rangle) \mathrm{p}(\mathrm{a}|<\mathrm{s}\rangle$ This is)
p (example|This is a$) \mathrm{p}(</ \mathrm{s}>\mid$ is a example)
=> to calculate the p (example|This is a)
N -Gram: p (example|This is a$)=\frac{C(\text { This is a example })}{C(\text { This is } a)}$


## N－gram－data sparsity

－Data sparsity

## Example：

the data：John read moby dick（白鲸记）．Mary read a different book．She read a book by Cher．（15 words＋18 phrase）


## N-gram-smoothing methods

- Data sparsity
- Smoothing methods

| \|data\ ngram $1=13$ ngram 2=16 |  |  |
| :---: | :---: | :---: |
| \1-grams: |  |  |
| 2/15 | a | 0.1 |
| 2/15 | book | 0.2 |
| 1/15 | by | 0.1 |
| 1/15 | dick | 0.01 |
| 1/15 | differernt | 0.1 |
| 1/15 | John | 0.1 |
| 1/15 | Mary | 0.1 |
| 1/15 | moby | 0.1 |
| 3/15 | read | 0.1 |
| 1/15 | cher | 0.1 |
| 1/15 | she | 0.1 |
| 3/15 | <S> | 0.1 |
| 3/15 | </S> | 0.1 |


| L2-grams: |  |
| :--- | :--- |
| $1 / 1$ | John read |
| $1 / 3$ | read moby |
| $1 / 1$ | moby dick |
| $1 / 1$ | Mary read |
| $2 / 3$ | read a |
| $1 / 2$ | a different |
| $1 / 1$ | different book |
| $1 / 1$ | she read |
| $1 / 2$ | a book |
| $1 / 2$ | book by |
| $1 / 1$ | by cher |
| $1 / 1$ | cher </s> |
| $1 / 3$ | $<s>$ John |
| $1 / 1$ | dick </s> |
| $1 / 3$ | $<s>$ Mary |
| $1 / 2$ | book </s> |

$\mathrm{P}($ Cher read a book) $=\mathrm{p}($ Cher $\mid<\mathrm{s}>$ ) $\mathrm{p}($ read $\mid \mathrm{a}) \mathrm{p}(\mathrm{a} \mid$ read) $\mathrm{p}($ book $\mid \mathrm{a}) \mathrm{p}(</ \mathrm{s}>\mid$ book $)$
$=p(\text { Cher })^{*} 0.1 \mathrm{p}(\mathrm{read})^{\star} 0.1^{*} \mathrm{p}(\mathrm{a} \mid \mathrm{read}){ }^{*} \mathrm{p}(\text { book } \mid \mathrm{a})^{*} \mathrm{p}(</ \mathrm{s}>\mid \mathrm{book})$
$=0.00002$

## N-gram-smoothing methods

- Data sparsity
- Smoothing methods
- Additive smoothing

$$
p_{\mathrm{add}}\left(w_{i} \mid w_{i-n+1}^{i-1}\right)=\frac{\delta+c\left(w_{i-n+1}^{i}\right)}{\delta|V|+\sum_{w_{i}} c\left(w_{i-n+1}^{i}\right)}
$$

- Good-Turing estimate
- Jelinek-Mercer smoothing (interpolation)
- Katz smoothing (backoff)
- Witten-Bell smoothing
- Absolute discounting
- Kneser-Ney smoothing

$$
P_{\mathrm{katz}}\left(w_{n} \mid w_{n-N+1}^{n-1}\right)=\left\{\begin{array}{l}
P^{*}\left(w_{n} \mid w_{n-N+1}^{n-1}\right), \\
\alpha\left(w_{n-N+1}^{n-1}\right) P_{\mathrm{katz}}\left(w_{n} \mid w_{n-N+2}^{n-1}\right),
\end{array}\right.
$$

$$
\text { if } C\left(w_{n-N+1}^{n}\right)>0
$$ otherwise.

## NNLM-Introduction

## A Neural Probabilistic Language Model(Bengio et al, NIPS'2000 and JMLR 2003)

- Motivation:
- LM does not take into account contexts farther than 2 words.
- LM does not take into account the "similarity" between words.
- Idea:
- A word $w$ is associated with a distributed feature vector (a realvalued vector in $\mathbb{R}^{n} n$ is much smaller than size of the vocabulary)
- Express joint probability function $f$ of words sequence in terms of feature vectors
- Learn simultaneously the word feature vector and the parameters of $f$


## NNLM-Intoduction

- Target:

Neural architecture

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{w}_{j} \mid \mathrm{w}_{\left.\mathrm{j}-\mathrm{n}+1, \ldots, \mathrm{wj}_{-2}, \mathrm{wj}_{-1}\right)}\right)= \\
& \quad f\left(i, w_{t-1}, \ldots, w_{t-n+1}\right)=g\left(i, C\left(w_{t-1}\right), \ldots, C\left(w_{t-n+1}\right)\right)
\end{aligned}
$$

- Projection:
word2vector: word $\rightarrow[0.1,0.2, \ldots ., 0.3] \rightarrow C_{k}$ =>feature vector for each word


Figure: Feedforward neural network based LM used by Y. Bengio and H. Schwenk
[1] Y. Bengio, and R. Ducharme. A neural probabilistic language model. In Neural Information Processing Systems, volume 13, pages 932-938. 2001.

## NNLM-Introduction

- softmax output layer:

$$
P\left(w_{t} \mid w_{t-1}, \cdots, w_{t-n+1}\right)=\frac{e^{y_{w_{t}}}}{\sum_{i} e^{y_{i}}}
$$

- $y_{i}$ unnormalized log-probabilities for each output word $i$

$$
y=b+U \tanh (d+H x)
$$

- $x$ is the word features layer activation vector

$$
x=\left(C\left(w_{t-1}\right), \ldots, C\left(w_{t-n+1}\right)\right)
$$

- The free parameters of the model are:

$$
\theta=(b, d, W, U, H, C)
$$

- b output biases (|V|)
- $d$ the hidden layer biases $(h)$
- $U$ the hidden-to-output weights $(|V| \times h)$
- $H$ the hidden layer weights $(h \times(n-1) m)$
- $C$ word features $(|V| \times m)$


## NNLM-Forward Phase

- Steps forward:

$$
\begin{aligned}
& h_{j}=\sum_{l} m_{j l} c_{l}+b_{j} \\
& \mathrm{~d}_{j}=\tanh \left(h_{j}\right) \\
& \mathrm{O}_{i}=\sum_{j} v_{i j} d_{j}+k_{i} \\
& \mathrm{p}_{i}=e^{O_{i}} / \sum_{r=1}^{N} e^{O_{r}}
\end{aligned}
$$

## NNLM-Backward/Update Phase

## - Steps BP

$E=\sum_{i=1}^{N} t_{i} \ln p_{i}+\beta\left(\sum_{j l} m_{j l}^{2}+\sum_{i j} v_{i j}^{2}\right)$
where $t_{i}=1$ if the next word is i or $t_{i}=0$
note:
the first part: cross-entropy
the second part: is regularization term to prevent the neural network from overfitting the training data

$$
\frac{\partial \mathrm{E}}{\partial o_{i}}=\frac{\partial \mathrm{E}}{\partial p_{i}} \frac{\partial p_{i}}{\partial o_{i}}=\left(1-\mathrm{p}_{i}\right)
$$



$$
\frac{\partial \mathrm{E}}{\partial k_{i}}=\frac{\partial \mathrm{E}}{\partial o_{i}} \frac{\partial o_{i}}{\partial k_{i}}=\frac{\partial \mathrm{E}}{\partial o_{i}}=>k_{i}=k_{i}+\varepsilon \frac{\partial \mathrm{E}}{\partial k_{i}} \quad \frac{\partial \mathrm{E}}{\partial v_{i j}}=\frac{\partial \mathrm{E}}{\partial o_{i}} \frac{\partial o_{i}}{\partial v_{i j}}=\frac{\partial \mathrm{E}}{\partial o_{i}} d_{j}=>v_{i j}=v_{i j}+\varepsilon \frac{\partial \mathrm{E}}{\partial v_{i j}}
$$

$$
\frac{\partial \mathrm{E}}{\partial d_{j}}=\frac{\partial \mathrm{E}}{\partial o} \frac{\partial \mathbf{O}}{\partial d_{j}}=\sum_{i} \frac{\partial \mathrm{E}}{\partial o_{i}} v_{i j}
$$

$$
\frac{\partial \mathrm{E}}{\partial h_{j}}=\frac{\partial \mathrm{E}}{\partial d_{j}} \frac{\partial d_{j}}{\partial h_{j}}=\frac{\partial \mathrm{E}}{\partial d_{j}}\left(1-\tanh \left(h_{j}\right)^{2}\right)
$$

$$
\frac{\partial \mathrm{E}}{\partial b_{j}}=\frac{\partial \mathrm{E}}{\partial h_{j}} \frac{\partial h_{j}}{\partial b_{j}}=\frac{\partial \mathrm{E}}{\partial h_{j}} \Rightarrow b_{j}=b_{j}+\varepsilon \frac{\partial \mathrm{E}}{\partial b_{j}} \quad \frac{\partial \mathrm{E}}{\partial m_{j l}}=\frac{\partial \mathrm{E}}{\partial h_{j}} \frac{\partial h_{j}}{\partial m_{j l}}=\frac{\partial \mathrm{E}}{\partial h_{j}} c_{l} \Rightarrow m_{j l}=m_{j l}+\varepsilon \frac{\partial \mathrm{E}}{\partial m_{j l}}
$$

## NNLM--Multi NNLMs



- $\quad\left(P\left(\mathrm{w}_{j}=\mathrm{i} \mid \mathrm{h}_{j}\right)=\left(\begin{array}{ccc}p_{1}\left(\mathrm{w}_{j}=\mathrm{i} \mid \mathrm{h}_{j}\right) & 0<i<N_{1} \\ p_{2}\left(\mathrm{w}_{j}=\mathrm{i} \mid \mathrm{h}_{j}\right) & & N_{1}<i<N_{2} \\ & \vdots & \\ p_{m}\left(\mathrm{w}_{j}=\mathrm{i} \mid \mathrm{h}_{j}\right) & & N_{m-1}<i<N_{m}\end{array}\right.\right.$


## NNLM--Merge NNLMs




The steps:

$$
\begin{aligned}
& \mathrm{F}=\left(\mathrm{P}_{1}(\mathrm{o})^{T}, \mathrm{P}_{2}(\mathrm{o})^{T}, \cdots, \mathrm{P}_{m}(\mathrm{o})^{T}\right)^{T} \\
& \mathrm{H}=\mathrm{F} \times \mathrm{M}+\mathrm{b} \\
& \mathrm{O}=\mathrm{H} \times \mathrm{V}+\mathrm{o} \\
& \mathrm{p}_{i}=e^{o_{i}} / \sum_{r=1}^{N} e^{o_{r}}
\end{aligned}
$$

where: $\mathrm{P}_{\mathrm{m}}(\mathrm{o})^{T}$ is the output of single NNLM

## NNLM--Merge NNLMs



## NNLM-results

| mode | map | 2044 |  | record1900 | general | online1 | online2 | speedup | average |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ngram | 34.4 | 27.18 | 18.78 | 12.89 | 43.23 | 39.49 | 32.15 | 31.47 | 29.94875 |
| Ngram(replace) | 34.93 | 27.57 | 18.78 | 12.92 | 43.45 | 39.48 | 32.15 | 31.51 | 30.09875 |
| NNLM(0-10240) |  |  |  |  |  |  |  |  |  |
| P256-h192 | 34.11 | 27.6 | 18.94 | 13.85 | 44.6 | 39.58 | 32.13 | 31.7 |  |
| P256-h384 | 33.63 | 27.57 | 20.02 | 13.53 | 44.3 | 39.31 | 32.03 | 31.08 |  |
| P256-h576 | 33.81 | 27.18 | 19.27 | 13.59 | 44.32 | 39.3 | 32.03 | 31.17 |  |
| P384-h384 | 33.55 | 27.09 | 19.86 | 13.46 | 44.28 | 39.45 | 32.06 | 31.32 |  |
| $\begin{array}{r} \text { P256-h384- } \\ \text { h256 } \end{array}$ | 34.21 | 27.52 | 18.73 | 13.69 | 44.72 | 39.88 | 32.34 | 31.04 |  |

## NNLM-results

| model | map | 2044 |  | record1900 | general | online1 | online2 | speedup |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ngram | 34.4 | 27.18 | 18.78 | 12.89 | 43.23 | 39.49 | 32.15 | 31.47 |
| Ngram(replace) | 34.93 | 27.57 | 18.78 | 12.92 | 43.45 | 39.48 | 32.15 | 31.51 |
| NNLM(0-10240) |  |  |  |  |  |  |  |  |
| P256-h192 | 34.01 | 27.11 | 18.19 | 12.75 | 43.4 | 39.17 | 31.91 | 30.9 |
| P256-h384 | 33.9 | 27.05 | 18.35 | 12.71 | 43.3 | 39.2 | 31.86 | 31.04 |
| P256-h576 | 33.86 | 27 | 18.62 | 12.79 | 43.29 | 39.17 | 31.96 | 30.66 |
| P384-h384 | 34.14 | 27.08 | 18.35 | 12.68 | 43.29 | 39.2 | 31.85 | 30.83 |
| $\begin{array}{r} \text { P256-h384- } \\ \text { h256 } \end{array}$ | 34.14 | 27.08 | 18.29 | 12.83 | - 43.47 | 39.28 | 31.86 | 31.17 |

Note: weight0.1:new*0.1+0.9old

## NNLM(multi)--Results

| mode | map | 2044 | notep3 | $\begin{aligned} & \text { record19 } \\ & 00 \end{aligned}$ | general | online1 | online? | speedup |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ngram | 34.4 | 27.18 | 18.78 | 12.89 | 43.23 | 39.49 | 32.15 | 31.47 |
| ngram(replace) | 34.93 | 27.57 | 18.78 | 12.92 | 43.45 | 39.48 | 32.15 | 31.51 |
| mach1 | 34.35 | 27.8 | 20.45 | 13.27 | 44.22 | 39.78 | 32.28 | 32.03 |
| mach2 | 34.41 | 27.94 | 19.91 | 13.4 | 44.49 | 39.76 | 32.32 | 31.91 |
| mach3 | 34.32 | 27.99 | 19.86 | 13.43 | 44.68 | 39.76 | 32.39 | 31.78 |
| mach4 | 34.19 | 28.11 | 19.05 | 13.4 | 44.63 | 39.75 | 32.4 | 31.65 |
| mach5 | 34.16 | 28.04 | 18.94 | 13.43 | 44.72 | 39.73 | 32.41 | 31.63 |
| mach6 | 34.1 | 28.09 | 18.94 | 13.45 | 44.79 | 39.76 | 32.41 | 31.57 |
| mach7 | 34.11 | 28.06 | 18.83 | 13.45 | 44.91 | 39.74 | 32.43 | 31.67 |
| mach8 | 34.11 | 28.06 | 18.83 | 13.45 | 44.81 | 39.79 | 32.46 | 31.67 |
| mach9 | 34.14 | 28.02 | 18.94 | 13.42 | 44.87 | 39.8 | 32.47 | 31.87 |
| mach10 | 34.24 | 28.04 | 19.05 | 13.46 | 44.88 | 39.81 | 32.49 | 31.89 |
| weight0.1 | 34.16 | 27.14 | 18.46 | 12.77 | 43.46 | 39.22 | 31.91 | 30.94 |

Note: weight0.1: ${ }^{\text {new }}$ * $0.1+0.9$ old

## NNLM(merge)-results

| model | map | 2044 | notep3 | record1900 | general | online1 | online2 | speedup |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| ngram | 34.4 | 27.18 | 18.78 | 12.89 | 43.23 | 39.49 | 32.15 | 31.47 |
| Ngram(replace) | 34.93 | 27.57 | 18.78 | 12.92 | 43.45 | 39.48 | 32.15 | 31.51 |
| Mach10(no merge) | 34.24 | 28.04 | 19.05 | 13.46 | 44.88 | 39.81 | 32.49 | 31.89 |
| Mach10(merge) |  |  |  |  |  |  |  |  |
| h100 | 35.42 | 28.4 | 19.64 | 14.11 | 45.53 | 40.25 | 32.89 | 32.9 |
| h200 | 35.92 | 28.46 | 19.75 | 14.25 | 45.51 | 40.42 | 32.85 | 32.71 |

## NNLM--toolkit

- CSLM Toolkit http://www-lium.univ-lemans.fr/cs/m/

Holger Schwenk; CSLM - A modular Open-Source Continuous Space Language Modeling Toolkit, in Interspeech, August 2013.

## Word Representation

- Introduction
- C\&W
- M\&H
- RNNLM
- Huang


## Word2vec--Introduction

- One-hot Representation

$$
\begin{aligned}
& \text { dog => }\left[\begin{array}{lllllllllll}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \text { cat => }\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

- Distributed Representation

$$
\begin{aligned}
& \mathrm{dog}=>\left[\begin{array}{lllll}
0.792 & -0.177 & 0.98 & -0.9 \ldots . .
\end{array}\right] \\
& \text { cat }=>\left[\begin{array}{llll}
0.76 & 0.12 & -0.54 & 0.9 \\
0.65 & \ldots .
\end{array}\right]
\end{aligned}
$$

Ltd Inc
remain
be are is
being
beer

## Word2vec--Introduction

- Language Modeling
- Speech Recognition
- Machine Translation
- Part-Of-Speech Tagging
- Chunking
- Named Entity Recognition
- Semantic Role Labeling
- Sentiment Analysis
- Paraphrasing
- Question-Answering
- Word-Sense Disambiguation



## Word2vec—c\&w

- A neural network for learning word vectors (Collobert et al. JMLR 2011)

Natural Language Processing (almost) from Scratch Journal of Machine Learning Research 1 (2000) 1-48
It focus on how to use word vectors on Natural Language Processing

- Main idea
- A word and its context is a positive training sample; a random word in that same context gives a negative training sample:
- [+] positive = Score(Cat chills [on] a mat) $---f(x)$
- [-] negative $=$ Score(Cat chills [god] a mat)----- $f\left(x^{w}\right)$
- What to feed in the NN
- each word is an n-dimensional vector, a look up table:

Positive data set
The negative data set

- Training objective:

$$
\theta \rightarrow \sum \sum \operatorname{Max}\left\{0,1-S_{p o s}+S_{n e g}\right\}=\sum_{x \in X} \sum_{w \in D} \max \left\{0,1-f(x)+f\left(x^{w}\right)\right\}
$$

Where X is data set( n -windows), D is the dictionary, w is middle word of $n$-windows

- 3-layer NN:

$$
s=U^{T} f_{\theta}(W x+b) \Rightarrow f\left(w_{t}, w_{t-1}, \ldots, w_{t-n+1}\right)
$$

Where $f_{\theta}(\cdot)$ is a NN function. S is a score for the n -window sentence, x is vector of $\left(w_{t}, w_{t-1}, \ldots, w_{t-n+1}\right)$

Window size $\mathrm{n}=11$
$|\mathrm{V}|=1300000$
7 weeks

## Word2vec-M\&H

Three new graphical models for statistical language modelling Mnih A, Hinton G.

- Log-Bilinear model

$$
\begin{aligned}
& h=\sum_{i=1}^{t-1} H_{i} C\left(w_{i}\right) \\
& y_{j}=C\left(w_{j}\right)^{T} h \quad \rightarrow \text { Inner product to represent cos distance }
\end{aligned}
$$

Where $C\left(w_{i}\right)$ is a word-vector of $w_{i}, H_{i}$ is $\mathrm{m}^{*} \mathrm{~m}$ matrix.

- Hierarchical Log-Bilinear Model

To speed up the calculation

## Word2vec—RNNLM

Linguistic Regularities in Continuous Space Word Representations (Mikolov, et al. 2013)

- Recurrent Neural Network Model



## Word2vec--RNNLM

## Linguistic Regularities in Continuous Space Word Representations (Mikolov, et al. 2013)

- Recurrent Neural Network Model
- The input vector $w(t)$ represents input word at time $t$ encoded using One hit coding.
- The output layer $y(t)$ produces a probability distribution over words.
- The hidden layer $s(t)$ maintains a representation of the sentence history.
- $\quad w(t)$ and $y(t)$ are of same dimension as vocabulary
- Model:

$$
\begin{gathered}
s(t)=f(U w(t)+W s(t-1)) \\
y(t)=g(V s(t))
\end{gathered}
$$

Where $f$ is the sigmod function and $g$ is the softmax funciton

## Word2vec--RNNLM

- Training:
- Stochastic Gradient Descent (SGD)

Objective(Error) function:

$$
\operatorname{error}(t)=d(t)-y(t)
$$

where $\mathrm{d}(\mathrm{t})$ is the desired vector, i.e $\mathrm{w}(\mathrm{t})$

- Go through all the training data iteratively, and update the weight matrices $\mathrm{U}, \mathrm{V}$ and W online (after processing every word)
- Training is performed in several epochs (usually 5-10)
- Where is the word representation?
- $U$, with each column


## Word2vec--RNNLM



Experiments on Broadcast News NIST-RT04

## Word2vec--Huang

Improving Word Representations via Global Context and Multiple Word Prototypes (Huang, et al. ACL 2013)


## Word2vec--Huang

- Improve Collobert \& Weston's model
- Training objective:

$$
\begin{gathered}
\theta \rightarrow \sum \sum \operatorname{Max}\left\{0,1-S_{\text {pos }}+S_{\text {neg }}\right\} \\
\downarrow \\
\theta \rightarrow \sum \sum \operatorname{Max}\left\{0,1-S_{p o s, d}+S_{n e g, d}\right\}
\end{gathered}
$$

where $d$ is the document (weighted sum of words in $d$ )


## Word2vec-Interesing finding

- Measuring Linguistic Regularity
- Syntactic/Semetic Test


C (king) $-\mathrm{C}($ queen $) \approx \mathrm{C}($ man $)-\mathrm{C}($ woman $)$
$\mathrm{C}($ king $)-\mathrm{C}($ man $)+\mathrm{C}($ woman $) \approx \mathrm{C}($ queen $)$

These representations are surprisingly good at capturing syntactic and semantic regularities in language, and that each relationship is characterized by a relation-specific vector offset.


Figure 1: Distributed word vector representations of numbers and animals in English (left) and Spanish (right). The five vectors in each language were projected down to two dimensions using PCA, and then manually rotated to accentuate their similarity. It can be seen that these concepts have similar geometric arrangements in both spaces, suggesting that it is possible to learn an accurate linear mapping from one space to another.

## Word2vec--summary

- Useful tools

1. google https://code.google.com/p/word2vec/
train word vector
2. SENNA http://ml.nec-labs.com/senna/

Part of Speech (POS)
Chunking (CHK)
Name Entity Recognition (NER)
Semantic Role Labeling (SRL)
Syntactic Parsing (PSG)
3. Word Representations for NLP http://metaoptimize.com/projects/wordreprs/

Neural language model (Collobert + Weston)
HLBL language model
Brown clusters
CRF Chunking with word representations
Perceptron NER with word representations
Random indexing word representations
4. Huang http://www.socher.org/index.php/Main/ImprovingWordRepresentationsViaGlobalContextAndMultipleWordPrototypes
5. RNNLM Toolkit http://www.fit.vutbr.cz/~imikolov/rnnlm/

## References

- [1] Holger Schwenk; CSLM - A modular Open-Source Continuous Space Language Modeling Toolkit, in Interspeech, August 2013.
- [2] Y. Bengio, and R. Ducharme. A neural probabilistic language model. In Neural Information Processing Systems, volume 13, pages 932-938. 2001
- [3] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word Representations in Vector Space. In Proceedings of Workshop at ICLR, 2013.
- [4]Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed Representations of Words and Phrases and their Compositionality. In Proceedings of NIPS, 2013.
- [5]Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic Regularities in Continuous Space Word Representations. In Proceedings of NAACL HLT, 2013.
- [6] ngram smoothing http://nlp.stanford.edu/~wcmac/papers/20050421-smoothing-tutorial.pdf
- Mikolov, Tomas, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word representations. Proceedings of NAACL-HLT. 2013.
- [7] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu and Pavel Kuksa.Natural Language Processing (Almost) from Scratch. Journal of Machine Learning Research (JMLR), 12:2493-2537, 2011.
- [8] Andriy Mnih \& Geoffrey Hinton. Three new graphical models for statistical language modelling. International Conference on Machine Learning (ICML). 2007.
- [9] Andriy Mnih \& Geoffrey Hinton. A scalable hierarchical distributed language model. The Conference on Neural Information Processing Systems (NIPS) (pp. 1081-1088). 2008.
- [10] Mikolov Tomáš. Statistical Language Models based on Neural Networks. PhD thesis, Brno University of Technology. 2012.
- [11] Turian, Joseph, Lev Ratinov, and Yoshua Bengio. Word representations: a simple and general method for semi-supervised learning. Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics (ACL). 2010.
- Thanks
- Q \& A

