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Improving Low-Resource Speech Recognition with Pretrained Speech Models: Continued Pretraining vs. Semi-Supervised
Training

* Task

CoPT vs. SST on the XLSR-53 pretrained model in several low-resource languages

* Motivation

finetuning dependent on the amount of in-language or similar-to-in-language data included in the pretraining
dataset

* Datasets

Build sets: Georgian, Farsi, Somali (36-65h) and Tagalog (150h) (CS NB TB)

BABEL sets: Georgian Tagalog (CS)

Youtube sets: For each language (1000 h )

* Experiments

For each language, we consider four different CoPT setups:
* None: The baseline setup, no CoPT
 BUILD: Using the build data for CoPT

* YouTube: Using the 1000 hour unlabeled in-language
YouTube audio for CoPT

« BUILD + YouTube: Using both the build data and corre-
sponding 1000 hour unlabeled in-language YouTube au-
dio for CoPT

In all four setups we start from the publicly available XLSR-53
pretrained model’.



Table 1: WER results comparing CoPT with different pretraining data with and without SST Table 2: MATERIAL analysis WER by genre with finetuning
using build only.

CoPT Finetuning Georgian Farsi Somali Tagalog
None BUILD 18.7 30.7 511 34.6 Language CoPT ¢S N8 1B
None BUILD + SST 18.0 279 504 26.6 Georgian  None 33.8 119 19.0
32. . :
BUILD BUILD 18.5 32.1 50.4 33.1 BUILD + YT 327 10_ 7 174
BUILD BUILD + SST 17.7 27.5  50.2 26.1 Farsi None 41.5 266 308
YouTube BUILD 17.5 276 494 26.6 BUILD + YT 382 23.1 272
YouTube BUILD + SST 17.7 27.3 49.9 25.8 ) None 59.0 471 52.1
BUILD + YouTube BUILD 17.4 272 489 26.5 Somali BUILD + YT 564 446 495
BUILD + YouTube BUILD + SST 17.6 272 499 25.8 _
None 452 253 356

BUILD + YouTube BUILD + SST Best 17.6 26.5 49.0 24.4 Tagalog BUILD+ YT 435 190 27.6
Table 3: BABEL dev set WER with CoPT with finetuning using
corresponding train set.

Language CoPT WER . Summarize

Georoi: None  31.9 CoPT provides similar to, or better, results than SST

sy 30.7
: CoPT and SST are complementary
None 36.3 CoPT performs best with in-domain data
Tagalog

YT 35.2




Adaptive Activation Network for Low Resource Multilingual Speech Recognition

* Task
Adaptive activation network: cross-lingual learning.
* Motivation

multilingual learning

The existing models mostly established a bottleneck (BN) layer by pre-training on a large source language, and

transferring to the low resource target language.

 Datasets
|IARPA Babel:
* Methods

Adaptive Activation Network:

O’fl = F.'r!tlil.{fnoft—l + by)

different language [ at n-th layer. The defination of F! is a
set of basis functions as follows:

M

FL() =Y M(i)eil) 9)

i=1
where {7;}M represents M different basis activation func-
tion, and Al = [A! (1),..., AL (M)] € RM are the coordinates
of bases {o;}M . In this work, we also chose the adaptive
piecewise linear (APL) activation units [20], to parameterize
F'(-). The definition of F!(-) is as following:

M
F'(z) = maz(0,z) + Z A (iymax(0, —z + b)) (10)
i=1
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Fig. 1. The architecture of CNN-RNN-DNN network for low resource speech
recognition task. The bottom convolutional layers (CNN) extract the local
features of the audio. The middle recurrent layers (RNN) model the long-time
dependency of the feature sequence. The upper deep neural layers (DNN) map
the features to the vocabulary of target language. The whole network is trained
by the CTC loss between the output hidden states and gold text sequence.
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activation nctwnﬁ;s of Guarani, I,ilhuaniaq ar}(l Cantonese (orange, Adark
(a) Traditional Transfer Learning (b) Traditional Multilingual Structure (c) The Proposed AANET Architecture onge s red) s Liyee;n. The sdeptive activation networks of: Gusraol s

Lithuanian are more similar, and differ from that of Cantonese a lot. Adaptive
activation network introduces more non-linearity into the neural network and
Fig. 2. The traditional transfer learning (a) and multilingual (b) structures are training the models in source large or multilingual corpus, to produce the increases the learning capability of ASR system.

bottleneck (BN) layer features, And then, the upper layers are finetuned in the target corpus for target ASR task. By contrast, the proposed Adaptive Activation

Network (AANET) architecture (c) only replaces the Activation Function (AF) of the upper layers, and uses these AANET to model the relevance and difference

among different languages.

Cross-lingual Learning Multilingual Learning
Lore =L, (1n

More specifically, our cross-lingual learning method is: (1)
pre-training the model, which contains adaptive activation L ]
network F,,'Z_O, in a large source corpus [y by the source CTC Lonutti = Z ﬁ,';im + ol (13)
loss Ei‘%e, (2) applying a new adaptive activation network i=1

F!' to the upper layers, and maintaining the weight and bias ) )
paramters. (3) We introduced the trace-norm function to reflect the rel-

evance of different languages. The definition of multi-task
languages loss L, 1s as following:

Because bottom layers are leveraged to extract speech feature,
and could not distinguish different unique features among
different languages.

Lot = trace(\/ \uAn ") (14)

Lrine = L, (12)



* Experiments:

TABLE IV

RESULTS OF DIFFERENT TRAINING STRATEGIES WITH ADAPTIVE ACTIVATION NETWORK, WER (%)

Model Pre-training Data Fine-tuning Data Ambharic Cantonese

CRD-Small + FS - Ambharic, Cantonese 71.2 58.3

CRD-Small + BN Guarani, Igbo, Lithuanian Ambharic, Cantonese 69.1 55.1

CRD-Small + CL Guarani, Igho, Lithuanian Ambharic, Cantonese 68.2 33.2

CRD-Small + ML - Guarani, Igbo, Lithuanian, Amharic, 68.9 56.2
Cantonese

CRD-Small + CL & ML Guarani, Igho, Lithuanian Guarani, Igbo, Lithuanian, Amharic, 67.3 529
Cantonese

CRD-Large + FS - Ambharic, Cantonese 68.9 57.7

CRD-Large + BN Guarani, Igho, Lithuanian Ambharic, Cantonese 66.3 54.6

CRD-Large + CL Guarani, Igbo, Lithuanian Ambharic, Cantonese 66.2 51.3

CRD-Large + ML - Guarani, Igbo, Lithuanian, Amharic, 67.8 54.1
Cantonese

CRD-Large + CL & ML Guarani, Igbo, Lithuanian Guarani, Igbo, Lithuanian, Amharic,  66.3 51.1

Cantonese

* Summarize

FS: From-Scratch Training
BN: Bottleneck Features

CL: Cross-lingual Learning
ML: Multilingual Learning

introduced adaptive activation network to the low resource multilingual speech recognition
Propose a cross-lingual learning approach

Propose a multilingual learning approach, jointly the CTC loss + trace-norm function
Combine the cross-lingual learning and multilingual learning together



Combining Spectral and Self-Supervised Features for Low Resource Speech Recognition and Translation

* Task

learnable and interpretable framework to combine SF and SSL representations

* Motivation

the quality of SSL representations depends highly on the relatedness between the SSL training domain(s)
and the target data domain

* Datasets | Encoder-Decoder |
Totonac (10h) Arabic from Common voice (20h) Mboshi-French(4h) | LiJ;;“‘S) |
* Methods '
Feature extraction hes Concat hes
fi(S) = (ff(S)e R |t =1,---,T;), i € {SF, SSL} (1) é

_ _ Attention Attention
Learnable combinations oot vie] e ot fe tom

fruse(S) = LINEAR(TRANSFORM( fse(S), fssL(S))  (2)

fsr(S) fss1.(S)

SF | SSL
. - . K 5l \Y
Qi = L(OWE, Ki= f(SWE, Vi= £(SWY  (3)
. . S
QsF - KssL .

hsp = SOFTMAX( \/E )V-:;SL + f SF(S ) (4) Figure 1: Architecture of our proposed co-attention based fu-

. sion. Raw signal S is passed through SF and SSL feature ex-
hss, = SOFTMAX( QssL - Ksr )V;F n quL(S) (5) tractors. The extracted features, fsp(S) and fss.(S), attend

D to each other through two distinct attention mechanisms. Out-
put features are then concatenated, projected and passed to the

fFUSE(S) = LINEARUISF H hs_qL) (6) speech model.



Encoder-Decoder

5 * Experiments:

¢ |cz2|...|er| fruseS)

Table 1: ASR and ST results over models described in Sec. 4.2.
The two first experiments are our FBANK and SSL baselines.
The following lines are the proposed Linear, Convolutional, co-
Attention, and Mixture of Experts models.

| CER | BLEU T
f(®) [ |2 |...[ar by | b2 | .| br | fisu(s) Exp | Totonac | Arabic || Mboshi-French
SSL Base 17.2 154 10.9
SSL 14.2 8.1 10.6
S
Linear 14.0 6.6 11.6
Conv. 13.9 7.2 11.3
Figure 2: Architecture of the model combining SF and SSL co-Att. 134 54 10.9
through a gating mechanism. For a given utterance, the fea- MoE 13.7 62 11.2
tures are extracted by the two models (a; for SF and b; for SSL,
i € {1,...,T}). Each model gets confidence scores and fea-
tures are then summed. The c; variables indicates the weighted _ ) )
sum. Colors of ¢; frames are used to show how each frame gets Table 2: Two views on HuBERT representations quality over
a specific combination of SF (green) and SSL (red) features. Totonac and Arabic data. The first column presents wsst(.S),

- the mean MoE weights for HuBERT front-end. The second col-

= . TTX2 - - -
Eq. (7), where w(S5) € R 1s the obtained weight matrix. umn is the character error reduction rate reduction (CERR®)

w(S) = O fsr(S) Winer), 7 between the FBANK baseline and the HuBERT baseline.
with Wyer € RP*? a learnable matrix, and ©(-) a gating- —
type function such as SOFTMAX. For clarity, we introduce Language | wss.(S) CERR(Base — SSL)
wsr(S), wsst.(S) € RT, the column vectors of w(.S). Totonac 0.17 17%
The final combined feature is computed following Eq. (8), Arabic 0.51 47%
where [x]" denotes the transpose vector of .
fruse(S) = > [wi(S)]"A(S) (8)

i€ {SF,SSL}



