Can audio-visual integration strengthen robustness under multimodal attacks?

Yapeng Tian Chenliang Xu University of Rochester

> 陈仁苗 2022.3.11

McGurk Effect

Do

Robustness of Computational Models

- There is now having developed some computational approaches to achieve robust auditory or visual perception by multisensory integration
 - audio-visual speaker recognition, speech recognition, sound separation, event recognition, etc
- Whether these models still exhibit robustness under attacks?
- Inspired by the auditory-visual illusion in human perception, presenting a systematic study on machines' multisensory integration under attacks

Audio-Visual Robustness under Multimodal Attacks

Multimodal attack

- Goal: to fool the target multimodal model by adding human imperceptible perturbations into its inputs from multiple modalities
- Two types: single-modality attack and audio-visual attack
- Adversarial objective:

$$\underset{x_a^{adv}, x_v^{adv}}{\operatorname{argmax}} \mathcal{L}(x_a^{adv}, x_v^{adv}, y; \theta)$$
s.t.
$$||x_a^{adv} - x_a||_p \leqslant \epsilon_a$$

$$||x_v^{adv} - x_v||_p \leqslant \epsilon_v$$

Audio-Visual Robustness under Multimodal Attacks

Audio-visual event recognition as a proxy task

Experiments

- Attack methods
 - Fast Gradient Sign Method (FGSM)

- Projected Gradient Descent (PGD)
 - Iterative variant of FGSM
- Momentum-based Iterative Method (MIM)
 - integrates a momentum term into the iterative process to further stabilize update directions and mitigate local minima

Experiments

- Datasets
 - MIT-MUSIC
 - 520 videos in 11 instrument categories
 - Clean audio-visual synchronized musical recordings
 - Kinetics-Sound
 - 15,000+ 10s YouTube Videos in 27 human action categories
 - More diverse events rather than only musical instruments
 - More noisy (audio and visual content inside some videos might not be related)
 - AVE
 - contains 4143 videos covering 28 event categories and video
 - temporally labeled with audio-visual event boundaries
- Metric
 - Recognition accuracy

Audio-Visual Robustness under Multimodal Attacks

Dataset	Attack	✓ AV	X A	XV	XAV	Avg.	Unimodal ✓ A	Unimodal ✓ V
MM	FGSM [30] PGD [45] MIM [17]	88.46	50.00 13.46 6.73	25.00 1.92 1.92	15.38 0.00 0.00	30.12 5.09 2.88	59.62	81.73
KS	FGSM [30] PGD [45] MIM [17]	72.42	33.38 6.22 3.87	15.08 1.90 1.55	8.18 0.77 0.32	18.88 2.96 1.91	35.99	66.08

Observations:

- Clean AV models are better than both clean A and V models
- AV models under single-modality attacks might achieve worse performance than unimodal models.
- AV attacks make models even worse

Conclusion:

• A joint perception is not always better than individual perceptions under attacks

Adversarial robustness against multimodal attacks on the MIT-MUSIC. The x-axis denotes the attack strength.

• An unreliable modality could weaken perception by the other modality in audio-visual models

Attacked Audio-Visual Event Recognition Results

helicopter

violin

chainsaw

violin

helicopter

dog barking

Different Fusions under Attacks

Method	✓AV	Χ A	XV	X AV	Avg.
Sum	88.46	35.58	45.19	3.85	43.27
Concat	88.46	51.92	45.19	15.38	50.24
FiLM [57]	83.65	28.85	39.42	3.85	38.95
Gated-Sum [39]	89.42	33.65	44.23	4.81	43.03
Gated-Concat [39]	89.42	45.19	43.27	13.46	47.84

- FiLM $f_{av} = \alpha(f_a) \cdot f_v + \beta(f_a)$
- Gated-Sum

$$f_1 = \sigma(f_a) \cdot f_v,$$

$$f_2 = \sigma(f_v) \cdot f_a,$$

$$f_{av} = f_1 + f_2$$

Gated-Concat

$$f_{av} = [f_1; f_2]$$

Different Fusions under Attacks

Method	✓AV	Χ A	XV	XAV	Avg.
Sum	88.46	35.58	45.19	3.85	43.27
Concat	88.46	51.92	45.19	15.38	50.24
FiLM [57]	83.65	28.85	39.42	3.85	38.95
Gated-Sum [39]	89.42	33.65	44.23	4.81	43.03
Gated-Concat [39]	89.42	45.19	43.27	13.46	47.84

- AV models with different fusions achieve competitive performance on attack-free inputs.
- But, all of the models with different fusions are vulnerable to attacks

Visualize Sound Sources under Attacks

Audio-Visual Defense

 To encourage unimodal intra-class compactness of AV models, proposing to minimize audio-visual similarity

$$\mathcal{L}_{Sim} = \frac{f_a \cdot f_v}{max(||f_a||_2 \cdot ||f_v||_2, \eta)}$$

Full modal is optimized by a joint objective function

$$\mathcal{L} = \mathcal{L}_{CE} + \mathcal{L}_{Sim}$$

- With the second term, the model will tend to learn separated audio and visual embeddings
- The first term will still urge the features to be discriminative, which will implicitly encourage the both separated unimodal embeddings to be more compact and separable

Audio-Visual Defense

With the constraint, the model learns more compact and separable unimodal embeddings

Audio-Visual Defense

Audio and Visual feature denoising

Using external memory bank to restore cleaner features

$$\min_{\alpha_a} ||f_a^{adv} - M_a \alpha_a||_2^2 + \lambda_a ||\alpha_a||_1$$

$$\min_{\alpha_v} ||f_v^{adv} - M_v \alpha_v||_2^2 + \lambda_v ||\alpha_v||_1$$

Defense Results

Relative improvement (RI) metric

$$Avg = \frac{1}{3}(XA + XV + XAV)$$

$$RI = (AV_m + Avg_m) - (AV_n + Avg_n)$$

Avoid a shortcut when audio-visual defense

Defense (MUSIC)	✓AV	X A	XV	X AV	Avg	RI
None	88.46	51.92	45.19	15.38	37.50	0.00
Unimodal A	59.62	0.00	59.62	0.00	19.87	-46.47
Unimodal V	81.73	81.73	11.54	11.54	34.94	-9.29
PCL [51]	83.65	81.73	37.50	36.54	51.91	9.60
MaxSim	89.42	52.88	45.19	31.73	43.27	6.73
MinSim	91.35	70.19	46.15	36.54	50.96	16.35
ExFMem	89.42	53.85	50.00	20.19	41.34	4.80
MinSim+ExFMem	90.38	73.08	53.85	42.31	56.41	20.83
Defense (Kinetics)	✓AV	X A	XV	XAV	Avg.	RI
None	72.42	36.40	26.35	8.09	23.61	0.00
Unimodal A	35.99	1.87	35.99	1.87	13.24	-46.80
Unimodal V	66.08	66.08	18.72	18.72	34.50	4.55
PCL [51]	64.50	63.43	29.28	28.67	40.46	8.93
MaxSim	71.39	34.95	29.57	21.46	28.66	4.02
MaxSim MinSim	71.39 70.88	34.95 52.42	29.57 28.12	21.46 21.62	28.66 34.05	4.02 8.99

Advantage:

- The structure of article is novel and completive, begin with confirm problem exists by a lot of means, and then propose the method to solve it.
- It provide a visualize experiment to show the reason for attack.

Disadvantage:

• The audio use waveforms and the architecture of the network is too simple, and I think it maybe cannot exact a good feature.

Inspiration:

The ways to attack modal, fusion and defense.

Feature work:

- How to deal with situation with losing one of the modality?
- Whether it will influent in speaker identification task?

```
self.features = \
   nn.Sequential(
   # block 1
   nn.Conv1d(1, 64, kernel_size=3, stride=2, padding=1),
   nn.BatchNorm1d(64),
   nn.ReLU(),
   nn.Conv1d(64, 64, kernel_size=3, stride=2, padding=1),
   nn.BatchNorm1d(64),
   nn.ReLU(),
   nn.MaxPool1d(kernel size=2, stride=2),
   # block 2
   nn.Conv1d(64, 128, kernel size=3, stride=2, padding=1),
   nn.BatchNorm1d(128),
   nn.ReLU(),
   nn.Conv1d(128, 128, kernel_size=3, stride=2, padding=1),
   nn.BatchNorm1d(128),
   nn.ReLU(),
   nn.MaxPool1d(kernel_size=2, stride=2),
   nn.Conv1d(128, 256, kernel_size=3, stride=2, padding=1),
   nn.BatchNorm1d(256),
   nn.ReLU().
   nn.Conv1d(256, 256, kernel size=3, stride=2, padding=1),
   nn.BatchNorm1d(256),
   nn.ReLU(),
   nn.MaxPool1d(kernel size=2, stride=2),
   # block 4
   nn.Conv1d(256, 512, kernel_size=3, stride=2, padding=1),
   nn.BatchNorm1d(512),
   nn.ReLU(),
   nn.Conv1d(512, 512, kernel_size=3, stride=2, padding=1),
   nn.BatchNorm1d(512),
   nn.ReLU(),
   nn.MaxPool1d(kernel_size=2, stride=2),
```

Thank you!