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Introduction

» GMM-UBM-based speaker verification heavily
relies on a well trained UBM.

»In practice, it is often difficult to collect sufficient
channel-matched data to train a fully consistent
UBM.

» A multitude of research has been proposed to

address channel mismatch or session variation.



Introduction
»Within the GMM-UBM framework,

& feature transform [3, 4, 5];
€ model compensation [6, 7];
€ score normalization [1, 8];
& factor analysis [9,10] and it's simple
algorithm implementation[11];
€ various feature and model compensation
approaches[12];

»Besides GMM-UBM,
€[13] proposed to reduce channel impact in
neural network;



Introduction

»We propose a sequential adaptive learning approach
to the channel mismatch problem.

» By this approach, the UBM and speaker models are
updated sequentially and gradually, finally converging
to the new or dynamic channel with a large amount of

enrollments.



Sequential Adaptive Learning
»Review of MAP estimation

The objective function:
L(p,0) = logP(p,o|X)
X Z log{«"\"ﬂ(_él*-ilﬂ'-. o)P(pu. 0')}

Maximizing this objective leads to the following
MAP estimation:
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Sequential Adaptive Learning
»Review of MAP estimation

When extending to GMM:
N(®;; 1 6%)
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Define the following sufficient statistics:

P, = ZI'Z-(C) (3)
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the MAP estimation is given by:
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Sequential Adaptive Learning
»Sequential UBM adaptation

Motivation of sequential UBM adaptation:

Use the new enrollment speech data to update
the UBM. We start from a ‘pool and re-estimation’
procedure.
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Sequential Adaptive Learning

Pool and UBM
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Fig. 1. Sequential UBM MAP adaptation.



Sequential Adaptive Learning
»Sequential Speaker Model adaptation

Firstly, we need to save sufficient statistics for
each speaker which are defined in equation (3) and
(4).

When a new enrollment occurs, sequential UBM
adaptation Is used to train a new UBM, then we use
the new UBM to update each speaker model
according to it's sufficient statistics.
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Experiments

»We conduct the experiments on a time-varying

database [14].

»We start the experiments with two initial UBMS.
» The verification performance is evaluated in

terms of equal error rates (EER).



Experiments

»Sequential UBM adaptation experiment.

EER %
k=005 | k=1 K.=2
UBM (baseline) I1.75 11192 | 11.75
SUBMI(£k,, =90) [2.69 1242 | 12.05
SUBM(k,=180) [1.67 1120 | 1147
SUBM(k,=270) 11.19 | 11.05 | 11.07
SUBM(%,=360) 11.12 | 11.02 | 11.05

Table 1. Results with UBM,, as the initial.
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Experiments

»Sequential UBM adaptation experiment.

EER %
k=S | k= K=t
UBM (baseline) 10.04 | 10.22 | 10.44
SUBM(%, =90) 0.36 0.20 8.83
SUBM(%,=180) 8.77 8.88 8.82
SUBM(k,=270) 8.72 8.84 8.79
SUBM(%,=360) 8.73 8.82 8.79

Table 2. Results with UBMy as the 1nitial.
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RUBM(k,

Experiments

»Sequential Adaptive Learning experiment.

+ System EER#
Ks=0.5¢ Ke=1o Ke=Do
UBM(baseline)e | 11.75%¢ 11.92%¢ 11.75%¢
SUBM (ky,=90)< 9.34%¢ 8.90%¢ 8.65%¢
SUBM (%,=180) | 9.37% 9.04%¢ 8.95%
SUBM (ky=270)c | 9.47%e 9.22% 9.08%
SUBM (ky=360)c | 9.52%e 9.35%¢ 9.24%e
SUBM(ky=540)c | 9.74%¢ 9.54%e¢ 9.54%¢




»Sequential Adaptive Learning experiment.

Experiments

¢ System EER#
k~0.5¢ k=l¢ k=20
UBM(baseline)e | 10.04%¢ 10.22%¢ 10.44%¢
SUBM(k,=90)¢|  6.78%¢ 6.75%¢ 6.57%¢
SUBM (k,=180)¢ 6.78%« 6.64%« 6.48%«
SUBM (k,=270)c|  6.92%¢ 6.81%¢ 6.67%¢
SUBM (k,=360)¢ 7.10%¢ 7.02%¢ 6.03%¢
SUBM(k,=540)¢|  7.43%¢ 7.35%@ 7.20%¢
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Experiments

»Quality of sequential UBM.
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Conclusion

»By adapting an initial UBM with a strong prior
whenever a new enrollment is available, the UBM
learns and converges to the working channel
gradually, leading to improved verification
performance.

»Use the new UBM to update each speaker model
according to it's sufficient statics, leading to
Improved verification performance.

»In our experiments, this sequential approach
provides relative EER reduction of 24.1% and 34.9%
for two mismatched UBMSs, respectively.
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