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Introduction  
 

GMM-UBM-based speaker verification heavily 

relies on a well trained UBM. 

In practice, it is often difficult to collect sufficient 

channel-matched data to train a fully consistent 

UBM. 

A multitude of research has been proposed to 

address channel mismatch or session variation. 
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Introduction  
Within the GMM-UBM framework, 

 feature transform [3, 4, 5]; 

 model compensation [6, 7];  

 score normalization [1, 8]; 

 factor analysis [9,10] and it’s simple 

algorithm implementation[11]; 

 various feature and model compensation 

approaches[12]; 

Besides GMM-UBM, 

[13] proposed to reduce channel impact in 

neural network; 
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Introduction  
 

we propose a sequential adaptive learning approach 

to the channel mismatch problem. 

By this approach, the UBM and speaker models are 

updated sequentially and gradually, finally converging 

to the new or dynamic channel with a large amount of 

enrollments. 
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Sequential Adaptive Learning 

Review of MAP estimation 

 

    Maximizing this objective leads to the following 

MAP estimation: 

    The objective function: 
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Sequential Adaptive Learning 

Review of MAP estimation 

     When extending to GMM: 

    Define the following sufficient statistics: 

    the MAP estimation is given by: 
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Sequential Adaptive Learning 

Sequential UBM adaptation 

 Motivation of sequential UBM adaptation: 

    Use the new enrollment speech data to update 

the UBM. We start from a ‘pool and re-estimation’ 

procedure. 
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Sequential Adaptive Learning 
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Sequential Adaptive Learning 

Sequential Speaker Model adaptation 

     Firstly, we need to save sufficient statistics for 

each speaker which are defined in equation (3) and 

(4).   

    When a new enrollment occurs, sequential UBM 

adaptation is used to train a new UBM, then we use 

the new UBM to update each speaker model 

according to it’s sufficient statistics.   
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Sequential Adaptive Learning 
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Experiments  
 

We conduct the experiments on a time-varying 

database [14]. 

We start the experiments with two initial UBMs. 

The verification performance is evaluated in 

terms of equal error rates (EER). 
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Experiments  
 

Sequential UBM adaptation experiment. 
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Experiments  
 

Sequential UBM adaptation experiment. 
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Experiments  
 

Sequential Adaptive Learning experiment. 
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Experiments  
 

Sequential Adaptive Learning experiment. 
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Experiments  
 

Quality of sequential UBM. 
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Conclusion  
 

By adapting an initial UBM with a strong prior 

whenever a new enrollment is available, the UBM 

learns and converges to the working channel 

gradually, leading to improved verification 

performance.  

Use the new UBM to update each speaker model 

according to it’s sufficient statics, leading to 

improved verification performance. 

In our experiments, this sequential approach 

provides relative EER reduction of 24.1% and 34.9% 

for two mismatched UBMs, respectively. 
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