Sequential Adaptive Learning for Speaker Verification

Jun Wang
CSLT, RIIT, THU
2013-03-01

Outline

- 1. Introduction
- 2. Sequential Adaptive Learning
- 3. Experiments
- 4. Conclusion
- 5. Reference

Introduction

- ➤ GMM-UBM-based speaker verification heavily relies on a well trained UBM.
- ➤In practice, it is often difficult to collect sufficient channel-matched data to train a fully consistent UBM.
- ➤ A multitude of research has been proposed to address channel mismatch or session variation.

Introduction

- ➤ Within the GMM-UBM framework,
 - feature transform [3, 4, 5];
 - model compensation [6, 7];
 - score normalization [1, 8];
 - ◆ factor analysis [9,10] and it's simple algorithm implementation[11];
 - various feature and model compensation approaches[12];
- ➤ Besides GMM-UBM,
 - ◆[13] proposed to reduce channel impact in neural network;

Introduction

- >we propose a sequential adaptive learning approach to the channel mismatch problem.
- ➤ By this approach, the UBM and speaker models are updated sequentially and gradually, finally converging to the new or dynamic channel with a large amount of enrollments.

> Review of MAP estimation

The objective function:

$$\mathcal{L}(\mu, \sigma) = log P(\mu, \sigma | X)$$

$$\propto \sum_{i} log \{ \mathcal{N}(x_i; \mu, \sigma) P(\mu, \sigma) \}.$$

Maximizing this objective leads to the following MAP estimation:

$$\mu = \frac{\sum_{i} x_{i} + \frac{\sigma}{\hat{\sigma}} \hat{\mu}}{N + \frac{\sigma}{\hat{\sigma}}} \tag{1}$$

> Review of MAP estimation

When extending to GMM:

$$r_i(c) = \frac{\mathcal{N}(x_i; \mu_c, \sigma_c)}{\sum_m \mathcal{N}(x_i; \mu_m, \sigma_m)}.$$
 (2)

Define the following sufficient statistics:

$$r_c = \sum_i r_i(c) \tag{3}$$

$$z_c = \sum_i r_i(c)x_i, \tag{4}$$

the MAP estimation is given by:

$$\mu_c = \frac{z_c + \frac{\sigma}{\hat{\sigma}}\hat{\mu}}{r_c + \frac{\sigma}{\hat{\sigma}}} \tag{5}$$

> Sequential UBM adaptation

Motivation of sequential UBM adaptation:

Use the new enrollment speech data to update the UBM. We start from a 'pool and re-estimation' procedure.

$$\mu_c = \frac{z_c + \hat{z}_c}{r_c + \hat{r}_c}$$

$$= \frac{z_c + \hat{r}_c \hat{\mu}_c}{r_c + \hat{r}_c}$$
(6)
$$= (7)$$

$$\hat{r}_c = \frac{\sigma}{\hat{\sigma}}.\tag{8}$$

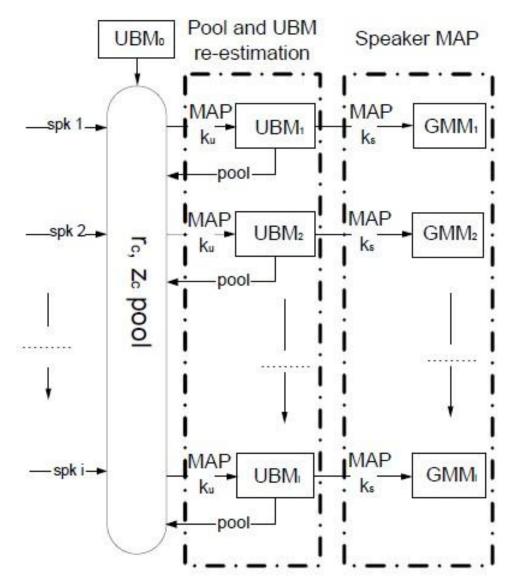


Fig. 1. Sequential UBM MAP adaptation.

> Sequential Speaker Model adaptation

Firstly, we need to save sufficient statistics for each speaker which are defined in equation (3) and (4).

When a new enrollment occurs, sequential UBM adaptation is used to train a new UBM, then we use the new UBM to update each speaker model according to it's sufficient statistics.

$$\mu = \frac{z_c + \frac{\sigma}{\widehat{\sigma}} \hat{\mu}_n}{r_c + \frac{\sigma}{\widehat{\sigma}}} \tag{9}$$

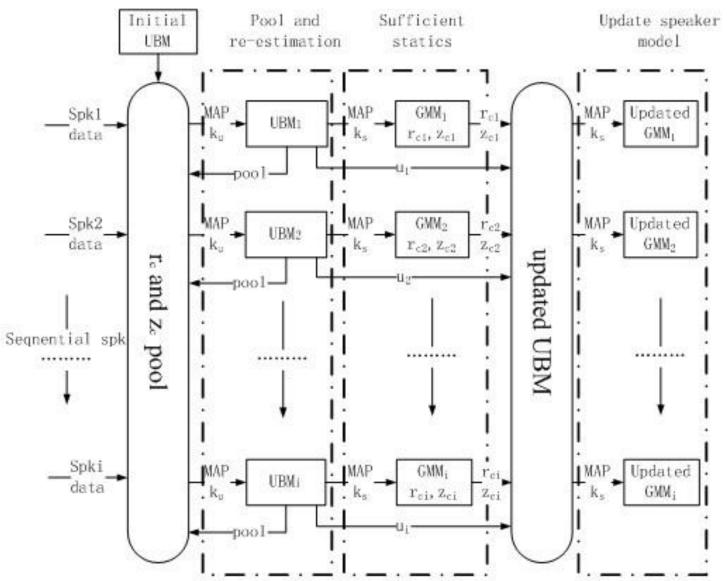


Fig2. Sequential adaptive learning

- ➤ We conduct the experiments on a time-varying database [14].
- >We start the experiments with two initial UBMs.
- The verification performance is evaluated in terms of equal error rates (EER).

➤ Sequential UBM adaptation experiment.

Î	EER%		
	$k_s = 0.5$	$k_s=1$	$k_s=2$
UBM (baseline)	11.75	11.92	11.75
$SUBM(k_u = 90)$	12.69	12.42	12.05
$SUBM(k_u=180)$	11.67	11.20	11.47
$SUBM(k_u=270)$	11.19	11.05	11.07
$SUBM(k_u=360)$	11.12	11.02	11.05

Table 1. Results with UBM_a as the initial.

> Sequential UBM adaptation experiment.

	EER%		
	$k_s = 0.5$	$k_s=1$	$k_s=2$
UBM (baseline)	10.04	10.22	10.44
$SUBM(k_u = 90)$	9.36	9.20	8.83
$SUBM(k_u=180)$	8.77	8.88	8.82
$SUBM(k_u=270)$	8.72	8.84	8.79
$SUBM(k_u=360)$	8.73	8.82	8.79

Table 2. Results with UBM_b as the initial.

➤ Sequential Adaptive Learning experiment.

42		System EER+	3
	k _s =0.5₽	$k_{s=1}$	k _{s=2} €
UBM(baseline)₽	11.75%	11.92%₽	11.75%
SUBM (k _u =90)₽	9.34%	8.90‰	8.65%
SUBM (k _u =180)₽	9.37%	9.04%₽	8.95%
SUBM (k _u =270)₽	9.47%₽	9.22%₽	9.08%
SUBM (k _u =360)₽	9.52‰	9.35‰	9.24%
SUBM (k _u =540)₽	9.74%	9.54‰	9.54‰

Table 3. Sequential adaptive learning with UBMa+

➤ Sequential Adaptive Learning experiment.

42	System EER₽			
73	k ₃ =0.5₽	k ₃ =1€	k _s =2€	
UBM(baseline)₽	10.04‰	10.22%₽	10.44%↔	
SUBM (k _u =90)↔	6.78%↔	6.75%₽	6.57%	
$SUBM(k_u=180)$	6.78%₽	6.64%₽	6.48%₽	
SUBM (k _u =270)↔	6.92%↔	6.81%₽	6.67%	
$SUBM(k_u=360) \Leftrightarrow$	7.10%↔	7.02%↔	6.93%+3	
SUBM (k ₁₁ =540)↔	7.43%₽	7.35%₽	7.29%	

Table 4. Sequential adaptive learning with UBMb-

➤ Quality of sequential UBM.

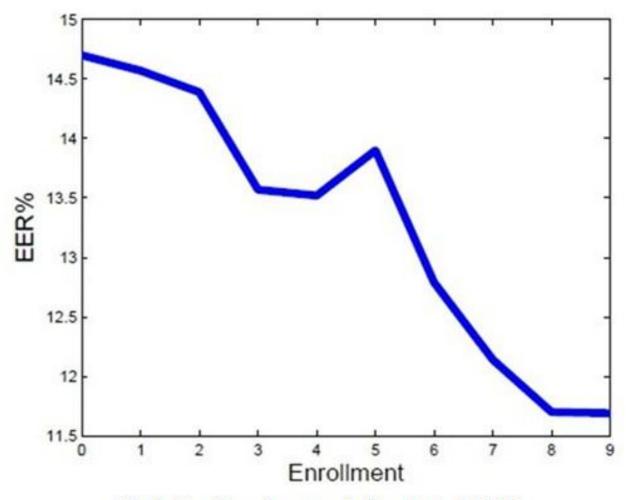


Fig3. Quality of sequentially adapted UBM-

Conclusion

- ➤ By adapting an initial UBM with a strong prior whenever a new enrollment is available, the UBM learns and converges to the working channel gradually, leading to improved verification performance.
- ➤ Use the new UBM to update each speaker model according to it's sufficient statics, leading to improved verification performance.
- ➤In our experiments, this sequential approach provides relative EER reduction of 24.1% and 34.9% for two mismatched UBMs, respectively.

Reference

- [1] Douglas A. Reynolds, Thomas F. Quatieri, and Robert B. Dunn, "Speaker verification using adapted gaussian mixture models," Digital Signal Processing, vol. 10, pp. 19–41, 2000.
- [2] J. L. Gauvain and C.-H. Lee, "Maximum a posteriori estimation for multivariate gaussian mixture observations of markov chains," IEEE Trans. Speech Audio Process, vol. 2, pp. 291–298, 1994.
- [3] D.A. Reynolds, "Channel robust speaker verification via feature mapping," in ICASSP 2003, 2003, vol. 2, pp. 53–56.
- [4] Donglai Zhu, Bin Ma, Haizhou Li, and Qiang Huo, "Handset-dependent background models for robust textindependent speaker recognition," in ICASSP 2007, 2007, vol. 4, pp. 61–64.
- [5] C. Vair, D. Colibro, and P. Laface, "Channel factors compensation in model and feature domain for speaker recognition," in Odyssey'06, the Speaker Recognition Workshop, 2006.
- [6] L. Heck and M. Weintraub, "Handset-dependent background models for robust text-independent speaker recognition," in ICASSP 1997, 1997, vol. 2, pp. 1071–1074.
- [7] R. Teunen, B. Shahshahani, and L. Heck, "A modelbased transformational approach to robust speaker recognition," in ICSLP2000, 2000.

Reference

- [8] R. Auckenthaler, M. Carey, and H. Lloyd-Thomas, "Score normalization for text-independent speaker verification systems," Digital Signal Processing, vol. 10, pp. 42–54, 2000.
- [9] S.P. Kishore and B. Yegnanarayana, "Speaker verification: minimizing the channel effects using autoassociative neural network models," in ICASSP2000, 2000, vol. 2, pp. 1101–1104.
- [10] A. Solomonoff, C. Quillen, and W. M. Campbell, "Channel compensation for svm speaker recognition," in Proc Odyssey, Speaker Language Recognition Workshop, 2004, pp. 57–62.
- [11] P. Kenny and P. Dumouchel, "Disentangling speaker and channel effects in speaker verification," in ICASSP2004, 2004, vol. 1, pp. 37–40.
- [12] Driss Matrouf, Nicolas Scheffer, Benoit Fauve, and Jean-Franois Bonastre, "A straightforward and efficient implementation of the factor analysis model for speaker verification," in Interspeech 2007, 2007.
- [13] L. Burget, P. Matejka, O. Glembek, and P. Schwarz, "Analysis of feature extraction and channel compensation in gmm speaker recognition system," IEEE Trans. on Audio, Speech and Language processing, vol. 15, no. 7, pp. 1979–1986, 2007.
- [14] Linlin Wang and Thomas Fang Zheng, "Creation of time-varying voiceprint database," in Oriental- COCOSDA, 2010.

Thanks Q&A